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ABSTRACT

Jessop, Andrew M. Ph.D, Purdue University, December 2013. Near-Field Pressure
Distributions to Enhance Sound Transmission into Multi-Layer Materials. Major
Professor: J. Stuart Bolton, School of Mechanical Engineering.

The large impedance di↵erence between air and most solids prevents significant

energy transfer from incident acoustic waves across the air-material interface. Refrac-

tion also plays a role in preventing acoustic transmission, as the wave speed di↵erence

between air and solid materials results in an increase of the resulting propagation

angles, creating near-field pressure distributions in the solid material. By utilizing

evanescent pressure distributions, which decay normal to the usual direction of prop-

agation and are represented as plane waves propagating with complex angles, energy

propagation through the interface can be increased in the subsonic region of wave

propagation: i.e., where waves typically do not propagate into a material with any

e↵ectiveness. By using an array of sources, it is possible to produce evanescent pres-

sure distributions in the solid. The way in which the characteristics of this array of

sources a↵ect the e�ciency of the generation of evanescent pressure distributions are

explored.

Because high impedance materials can be paired to a lower impedance materials

of interest to impede acoustical energy transmission, the wave propagation through

multi-layer materials must be considered to give an full accounting of power transmis-

sion into structures. A model for wave propagation in multi-layer systems of solids and

fluids was developed using wave potentials in each layer, allowing for coupling between

material types and calculation of inter-layer states. By using wavenumber-frequency

analysis, it is possible to target specific components in the multi-layer system and

understand the particular wavetypes that cause energy propagation into the system.
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CHAPTER 1. INTRODUCTION

Evanescent waves, i.e., waves that simultaneously propagate and attenuate, can be

used to improve energy transmission into high impedance solid materials. By over-

coming restrictions due to refraction at the air-solid interface, an evanescent wave

incident on the surface can propagate energy into a solid material at a greater range

of angles than classical plane waves. For high-impedance materials in multi-layer

systems, geometry e↵ects may provide addditional avenues for energy transmission

into the material. An understanding of evanescent wave e↵ects and their propagation

into multi-layer materials will enable novel methods for excitation of those materials.

Acoustical transmission into solid materials is typically limited by the large impedance

di↵erence between air and the material. Lower-density solid materials have densities

at least 1,000 times greater than air, and speed of sound di↵erences of 10 times or

more are typical. While the density di↵erence can be overcome by exploiting the

compressional and shear coupling e↵ects in the material, refraction due to the di↵er-

ence in sound speed is a limit that prevents energy transmission beyond the critical

angle of incidence.

The production of evanescent pressure distributions requires special sources. When

using a multi-source array, each source can be given a phase and amplitude in such a

way that the interference of the wavefronts produces the desired wave characteristics

on a surface. The amplitudes and phases of these sources can be found by construct-

ing a least-squares calculation of source strength that would approximate a wave at a

particular angle of incidence. Factors such as the angle and frequency of the desired

pressure distribution, as well as the geometry of the sources, all a↵ect the ability of

the source array to produce an approximation of the desired pressure distribution.

For more complex multi-layer structures, the geometry and component materials

both a↵ect the wave transmission into the system. Accounting for geometry will allow
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for flexural waves and cut-on of modes in each layer, which will a↵ect the total sound

transmission through the system.

The wave propagation characteristics of materials with unknown properties can

be found experimentally and used to improve the accuracy of wave propagation mod-

els. The waves resulting from such tests vary greatly with excitation location, and

the materials tested need to be mounted properly to prevent damping and geom-

etry constraints. Understanding these e↵ects and the waves produced by di↵erent

experimental conditions will allow for assessment of wave propagation and material

properties.

1.1 Motivation

The research undertaken in this project was part of a multi-university research

initiative (MURI) focused on non-contact excitation of energetic materials. There are

existing spectrographic methods for large-stando↵ detection of chemical signatures,

but when these chemical signatures are weak, excitation is needed to produce more

outgassing of the energetic material. Electromagnetic methods of excitation can be

defeated be installing a dielectric bu↵er around the material; in those cases, to excite

the materials, mechanical displacement is necessary. Acoustical excitation may be

able to provide a large-stando↵ method for excitation.

A typical scenario involves an energetic material behind a thin, rigid material.

Such a material would serve as both a container for the energetic material (which

typically needs to be cast from a liquid state) as well as concealment of the energetic

material. Examples would be a milk jug, which is composed of a thin layer of plastic,

or an aluminum can. There may be additional barriers serving as concealment, as

well as imperfections in the coupling between the barrier materials and the energetic

material that produce air gaps and further limit energy transmission.

Related aspects of the research performed by other reseachers in this overall

project involve classification of the coupling of the materials, its response to low
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frequency excitations, and extensive exploration of the thermo-physical properties

that may allow for heating and outgassing.

1.2 Contribution of Research

The primary goal of this research was the exploration of evanescent wave energy

transfer into multi-layer materials. To that end, several methodologies to increase our

understanding of evanescent waves and techniques for simulation of wave propagation

through multi-layer materials have been developed.

A detailed discussion of evanescent waves in air, as a result of complex angle

of transmission along a plane, will allow for the development of a model exploring

energy transfer of evanescent waves across the fluid-solid interface. While this model

is based on previous formulations of fluid-solid interaction, an accounting for the

e↵ects of evanescent waves has not previously been undertaken.

Wave propagation in multi-layer materials is modeled by using wave potentials in

each layer to allow for inter-layer material state calculation. In the model, the incom-

ing and outgoing waves are separated, which allows for calculation of the intensity of

each wave and a more accurate understanding of the e↵ects of each layer on energy

propagation. In addition, since the incoming and outgoing waves are separated, an

evanescent incident wave can be accurately represented.

A detailed accounting is also given of the e↵ects of excitation and material mount-

ing conditions on wave propagation measurements. This information can be used to

improve classification of wavetypes in unknown materials.

Generation of plane and evanescent waves using multi-source methods was also

explored and a simple model was developed. The contribution of the research on this

subject is a thorough exploration of the e↵ects of the incident wave properties and

source geometry on the ability to produce desired pressure distributions in energetic

materials.
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1.3 Outline

After a discussion of previous work relevent to this research is given in Chapter

2, Chapter 3 begins with a discussion of evanescent waves and how they can be

represented using complex angles. An evanescent wave’s ability to increase energy

transmission in the subsonic region of incident angles will be presented using closed-

form solutions of fluid-solid interaction. An assessment of the evanescent waves that

are generated in the near-field of a monopole then allows for experimental exploration

of their e↵ects on energy transmission into solids.

Chapter 4 is focused on multi-source methods for generating evanescent pressure

distributions. It will begin with a discussion of the radiation e↵ects of simple sources

and the incident wave that is to be modeled, before presenting a least-squares formu-

lation for approximating incident waves using multiple simple sources. An analysis

of the e↵ects of incident wave parameters and source geometry follows, including a

comparison of monopole and dipole e�ciency in modeling.

In Chapter 5 a model for multi-layer wave propagation using wave potentials

is presented. Several representative models are explored to show how multi-layer

systems a↵ect wave propagation.

Chapter 6 contains a description of experimental tests of wave propagation in both

previously classified and unknown materials. These tests allowed for an exploration of

mounting and excitation e↵ects on the resulting vibration in the material, and their

e↵ects on wave properties.

Finally, a summary of the research findings and recommendations for continuing

avenues of research are given in Chapter 7.
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CHAPTER 2. PREVIOUS RESEARCH

The results of the literature survey are organized into three general areas of research:

near-field e↵ects on sound transmission; wave propagation in multi-layer systems; and

generation of arbitrary pressure distributions. The chapter ends with a summary of

what is and is not known is these areas that is relevent to the current research.

2.1 Near-Field E↵ects on Sound Transmission

Much research has been performed regarding acoustic transmission into solids us-

ing waves in the ultrasonic frequency domain. For example, Gan, Hutchins, Billson,

and Schindel [1] have looked at the transmissibility of ultrasonic waves through ma-

terial samples. Many of these methods exploit resonances of the structure or the

microstructure of the material being investigated. However, ultrasound is only useful

in applications where propagation distances through air are short because the decay

of ultrasonic waves in air is significant; Fox, Khuri-Yakub, an Kino [2], for example,

found decay levels of 52 dB over 40 centimeters. Because a primary goal of the work

reported here is large-stando↵ investigation of materials, ultrasonic methods will not

be useful.

The basic theory of solid-fluid interaction is explained by Brekhovskikh [3]. By

equating the pressure and velocity in the wave-carrying fluid with that on the solid

surface, Brekhoskikh derived the equations for acoustic reflection and transmission

that are used as the basis for this study. He derived transmission coe�cients for both

the compressional and shear waves propagating into a solid, and performed a thorough

exploration of various regions of transmission, such as the supersonic and subsonic

regions of both the compressional and shear waves. Brekhovskikh also derived transfer

matrices for multi-layer propagation.
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The most common high-impedance-di↵erence interface studied is the air-water

interface, due to its naval applications. Hudimac [4] looked at the e↵ects of refraction

across the interface on energy transmission, deriving iso-intensity lines for sound

originating in air and transmitted into water. Weinstein and Henney [5] used that

work as the basis to calculate monopole sound transmission into water, looking at

energy transmission as a function of height above the surface. Young performed

experimental measurements of sound transmission between water and air [6]. From

his measurements, he found pressure levels equal to those predicted by a theory based

on ray-tracing, with an accuracy of 1-2 dB at most levels.

Meecham looked at sound propagation into water from an airborne source [7].

He formulated conditions in which acoustical energy from the air would propagate

into the water at small grazing angles caused by refraction in the air. He also found

transmission enhancement e↵ects due to surface roughness.

Bobrovnitskii [8, 9] briefly discussed the possibility of energy flow from evanescent

waves. He shows that the power resulting from a combination of evanescent waves

in opposing directions will lead to interaction between the otherwise out-of-phase

velocity and pressure components, resulting in an intensity equal to the cross-product

of the two waves’ amplitudes.

Godin [10, 11, 12, 13] has explored theoretical conditions under which a high-

impedance di↵erence boundary becomes acoustically transparent due to evanescent

waves from a source. In his research on both the air-water interface [10, 11, 12] and

the air-solid interface [13], he formulated equations for transmission from a monopole

source in the higher-impedance solid material into the fluid. Godin found significant

power flux across the interface due to inhomogeneous wave components in a monopole

close to the interface. For the air-solid transmission interface, Godin also accounted

for various lossy wavetypes that are typically seen in this type of transmission. He also

investigated the e↵ects of interface roughness; he found that there is no significant

additional transmission due to roughness that is much smaller than a wavelength in

the incident fluid [10]. Godin’s theory was tested by Calvo, McDonald, Nicholas,
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and Orris, who further developed the formulation to account for total power flux

when accounting for reflections from the surface [14], and performed preliminary

experimental measurements [15]. However, in these formulations the authors made

use of inhomogeneous wave components in water which are supersonic in air; the

inverse of this problem cannot take advantage of such a range of inhomogeneous

waves.

The coupling of acoustical energy and flexural waves in materials has been de-

scribed by Fahy and Gardonio [16]. Flexural waves typically have much lower wave

speeds than longitudinal or shear waves in a material, and they can therefore be

excited across a much broader range of incident angles. Flexural waves are not use-

ful for formulation of sound power transmission across a material interface, however,

because the flexural wave is structure-dependent and will not provide general trans-

mission across a variety of di↵erent geometries.

Park et al. [17] discussed the use of metamaterials in increasing the transfer of

electromagnetic waves into materials. By using a structure with an e↵ective cell size

much smaller than a wavelength, a negative density that enhances the transmission

of an evanescent electromagnetic wave can be created. However, despite the use of

metamaterials being shown to increase the acoustic transmission in classical wave

propagation [18], these evanescent transmission e↵ects cannot be seen in acoustical

materials because mechanical dissapation negates the e↵ects of the negative density

in the metamaterial.

2.2 Wave Propagation in Multi-Layer Systems

Folds and Loggins [19] expanded on the sound transmission work performed by

Brekhovskikh [3] to create propagation matrices for general cases of multi-layer solids.

He calculated ultrasonic wave propagation through single-layer and three-layer panels,

and found good correlation between the model and experimental results for lower

grazing angles.
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Pierce [20] explains more general theories for multi-layer propagation, such as the

e↵ects of inter-layer states and the ideal properties for a coupling layer. He also

considers flexural waves, though as an independent wavetype rather than through

coupling e↵ects of material waves in a thin plate system.

Brouard, Lafarge, and Allard formulated a system of linear equations to model

sound propagation in mixed fluid-solid layered systems [21]. By working from similar

matrix-based methods for sound propagation in fluids and solids, Brouard developed

a matrix relating the pressure and velocity of waves propagating through multiple

layers. At interfaces where the medium changes, such as from fluid to solid, a coupling

matrix is used to equate the di↵erent types of pressure and velocity amplitudes.

The use of this formulation allows for generation of transfer functions between the

incoming pressure and the resulting pressure or velocity at an internal layer.

Auld’s investigated propagation in waveguides, and derived dispersion relation-

ships for the di↵erent wavetypes in the system [22]. In his calculations using exist-

ing models, based primarily on Folds and Pierce’s formulations, he found dispersion

relationships showing material and flexural waves in constrained systems. He ex-

plained the relationship of cut-on frequencies for particular modes of vibration and

how they transitioned into waveguide-like behavior at higher angles of incidence. He

also showed how coupling of material waves can create Lamb waves, such as flexural

and dilatational waves.

Maidanik and Dickey developed a methodology for deriving a low-reflectivity ma-

terial [23]. In a two-layer material consisting of a thin plate and a thicker mate-

rial layer underneath, certain conditions for resonance could be met that couple the

flexural waves in the plate with other wavetypes in the material to produce a low-

reflectivity condition. They explored the material combinations under which this

could occur as well.

Mead has looked at vibration propagation through periodic systems [24, 25]. He

accounted for the presence of the modes of individual layers of a multi-layer sys-
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tem, and found resonance conditions that would cause ideal wave propagation in the

system.

In previous work by the author [26] on assessing the e↵ects of deformation on the

tire acoustic mode, the author used a wave potential-based method in a system of

linear equations. The work was built upon a model developed by Thompson [27], who

used wave potentials across a simpler geometry to formulate a closed-form solution

for the e↵ects of tire deformation on the tire’s acoustic mode.

Grosh and Williams developed a wavenumber-frequency decomposition technique

to visualize wavetypes in a material [28]. In addition to other techniques such as

Prony series decomposition, often used in modal analysis of vibrations in structures,

the use of wavenumber-frequency decomposition allows for identification of vibrational

modes. Grosh et al. applied this technique to both measured and simulated data.

Wahl and Bolton calculated wave speed properties for dispersive and non-dispersive

waves in a system using Wigner distributions [29]. By visualizing the amplitude of a

pulse versus time and frequency, the arrival time of waves and the resulting speed of

wave propagation can be determined. By filtering elements of the Wigner distribu-

tion, they were able to determine the energy carried by various wavetypes.

Bolton, Kim, and Song others have used a wavenumber domain representation of

vibration to visualize wavetypes in a system [30, 31, 32]. By visualizing tire vibra-

tion in the wavenumber-frequency domain, the wavetypes specific to tire treadband

vibration were isolated, and the damping in the treadband could be assessed.

In the previous research discussed here, phenomena evident in anomalous fluid-

solid transmission has been identified. By further classifying these e↵ects, there ex-

ists the possibility of controlling and utilizing them to deliver desired excitations to

a multi-layer material. The combination of the previously-developed methodologies

for simulating multi-layer acoustical propagation with the technique of wavenumber-

frequency visualization will allow for isolation of particular wavetypes in the system.

Incident evanescent can be created by expanding upon the techniques shown in pre-

vious research of wave front synthesis, considered next.
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2.3 Generation of Arbitrary Pressure Distributions

Typical multi-source methods entail the use of an array of sources with selectively-

phased outputs designed to produce an optimal amplitude output. For example,

beamforming techniques [33, 34] are applied to source arrays with the goal of ampli-

fying an output signal in a direction of interest. However, the present focus was on

creating a specified pressure distribution, rather than amplifying a source.

In other multi-source methods the array of sources was often used to generate

a plane wave: i.e., the sources were phased to generate a relatively large region of

plane wavefront. Berkhout, De Vries, and Vogel looked at using multiple sources to

generate plane waves in the far-field [35] by using a loudspeaker array. By selectively

phasing the sources, a larger wavefront could be generated by combining the smaller

wavefronts of the component sources. Their research was primarily focused on sim-

ulating large wavefronts at a particular location; such a method could not generally

produce plane waves at an angle to an interface surface.

Chang, Choi and Kim looked at generating plane waves in free space using a spher-

ical array of loudspeakers [36]. In his method, he generated a plane wave field using

multiple sound sources, but the dependence on the spherical geometry surrounding

the region of interest makes it unfeasible for our purposes.

Russell, Titlow and Bemmen [37] looked at the power output and directivity

patterns for monopoles, dipoles, and quadrupoles and measured how the theoretical

formulations of such sources match experimental approximations. He found that his

experimental approximations matched theory reasonably well at low frequencies, but

were limited by geometry and di↵raction at higher frequencies.

Bolton, Beauvilain, and Gardner experimented with the generation of pressure dis-

tributions in a region by using simple sources, particularly dipoles and quadrupoles

[38]. Through selective phasing of colocated simple sources, the radiation charac-

teristics of the system could be varied, including variation of the angular pressure
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distribution and reduction of the near-field intensity. These theories were verified in

later work [39] using four uniquely-arranged sources.

Ahrens and Spors developed methods for reproduction of plane waves using circu-

lar [40] and linear arrays [41]. In their formulation, they discretized continuous sound

sources to generate the desired plane wave field. By calculating a driving function for

the continuous distribution that gave an exact answer for the pressure distribution,

then discretizing that driving function into an array of point sources, they were able

to approximate the sound field produced by the discrete source. They also studied

driving function and discretization techniques to minimize the error associated with

their linearization method. These theoretical formulations will be di�cult to adapt

to loud speaker arrays used in experimental testing due to the complexity of the driv-

ing functions; a methodology that allows for arbitrary angular variation of a discrete

source would be more useful.

Robin, Berry, Moreau, and Dia [42] used multi-source methods to generate repro-

ducible turbulent pressure fields for use in structural acoustics. In their approach they

used both wavefront synthesis (as defined by Berkhout) and near-field holography the-

ory (inverted from its typical use in sound source detection) to generate the wave field

on a surface by using controllable sources. To simulate the turbulent boundary layer

properties by using a limited array of variables, they used relationships between the

desired wavelength of reproduction and the number of sources used.

Wang and Wu formulated a method for generating pressure distributions resulting

from irregularly-shaped vibrating sources [43]. They generated a set of orthonormal

functions from the modes of structure, then formed those equations into a least-

squares solution to calculate the combination of modes that produced the measured

pressure distribution. Wu expanded on this approach and applied it to a radiating

structure in an enclosed vibrating space, and combined those principles with nearfield

acoustical holography to create a computationally e�cient method for sound field

prediction [44, 45].
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Kirkeby and Nelson formulated a method of generating a complex pressure dis-

tribution from a series of simple sources [46]. Their method consists of altering the

amplitude and phase of a system of monopoles in a given geometry. They accom-

plished this by generating a series of linear equations, consisting of a matrix of Green’s

functions between the sources and pressure distribution at a point, multiplied by the

unknown phase amplitudes of the sources, to equal the resulting pressure distribution

at a series of discrete points. By finding a least-squares solution to this matrix, they

were able to find a vector of source phases that approximated the pressure distribu-

tion. They also established error bounds for the solution for di↵erent geometry and

frequency types.

2.4 Conclusions

The work described in this thesis on evanescent wave energy propagation into

solid materials is an expansion of the theory developed by Brekhovskikh [3]; his work

allows for evanescent incident waves as part of the general solution for fluid-solid

transmission but does not consider the consequences of using such waves. By formu-

lating evanescent waves incident on the surface by using complex angles, it can be

shown that significant energy transmission across the fluid-solid interface is possible.

Similiar propagation characteristics were shown in the near-field of a monopole by

Godin [10, 11, 12, 13]; however, in the present work further classification is provided

by using specifically generated evanescent waves rather than those already present in

the near-field. In his research Godin also established the basis for the experimental

portion of the research (reported here) on evanescent wave transmission into solid

matrials.

The formulation of evanescent wave pressure distributions described in Chapter

4 is an extension of the work of Kirkeby et al [46]. By using their system of lin-

ear equations, an accounting for the e↵ects of source geometry and desired pressure

distribution can be made. Other work, such as that performed by Russell [37] on
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experimental verification of monopole and dipole properties, were useful in assuring

experimental reproductivity of the distribution produced.

The model for wave propagation through layers used in this research was initially

developed by Brouard [21], who expanded the transfer matrix approach for wave

propagation. His model, a system of linear equations, accounts for both forward- and

backward-propagating waves in the system. The use of wave potentials as inputs to

the system of equations is based on previous work by Jessop [26] (which itself is taken

from the work of Thompson [27]) to account for wave potentials rather than material

states, thus allowing for inter-layer state and intensity calculation.
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CHAPTER 3. NEAR-FIELD EFFECTS ON SOLID-FLUID

ACOUSTICAL TRANSPARENCY

The characteristics of evanescent pressure distributions can be used to enhance sound

propagation through the air-solid interface. In typical air-solid propagation, the dif-

ference in density and wave speed across the interface results in very low energy

transmission. The di↵erence in wave speed also causes extreme refraction through

the interface; pressure in the solid will then decay quickly and there will be little

velocity propagation into the material. The region wherein refraction reduces energy

propagation into the material is known as the subsonic region; it is characterized by

the normal speed of sound of a wave into the material being less than the material’s

wave propagation speed. By inverting the typical near-field e↵ects seen in the sub-

sonic region of acoustical transmission and specifically generating evanescent pressure

distributions, it will be a shown that a larger portion of the energy in the sound wave

can be transmitted into the solid material.

Evanescent pressure distributions can be modeled by a plane wave propagating

at a complex angle. As shown by Brekhovskikh [3], the complex angle represents

decay or growth in the wave amplitude normal to the direction of propagation. Such

distributions are typically seen as the result of subsonic acoustic transmission (i.e.,

at incidence angles larger than the critical angle); however, intentional generation of

such a distribution may provide a means of controlling the angle of propagation and

energy transfer across an interface.

This chapter begins with a description of evanescent pressure distributions made

by the inclusion of complex wavenumbers and angles into the standard plane wave

formulas. A discussion of the theory of acoustical transmission through an interface

will lead to an exploration of the e↵ects of evanescent pressure distributions in acous-
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tical transmission. The evanescent pressure distributions generated by a monopole

will also be discussed and verified experimentally.

3.1 Evanescent Plane Waves

3.1.1 Fundamentals of Wave Propagation

The pressure of a propagating plane wave at a point in space, ~x, is:

p = Aej
~

k·~xe�j!t , (3.1)

where A is the amplitude (and initial phase) of the wave, ~k is the wavenumber vector

(the rate of change in phase per unit distance), and ! is the radian frequency (the

rate of change in phase over time, equal to 2⇡ times the frequency f in radians

per second). The components of ~k specify a direction of propagation for the wave.

For steady-state formulations, the phase change with time, e�j!t, does not have an

impact on the parameters discussed here, and is excluded from all future equations

for brevity.

The material’s wavenumber k = |~k|, which is the phase change per unit distance in

the direction of wave propagation, is a unit inversely proportional to the wavelength

of sound, �, and is related to frequency by the speed of sound in the material c:

k =
2⇡

�
=
!

c
. (3.2)

A wave propagating over a plane surface will have a trace wavenumber (and wave-

length) along the surface that is di↵erent from the material wavenumber. If a wave is

incident on a surface oriented along the x-y plane at an angle ✓ from the normal, ẑ, as

depicted in Figure 3.1, the e↵ective wavenumber along the surface in the x̂-direction

is:

k
x

= k sin ✓ . (3.3)
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At normal incidence, k
x

is 0, representing a uniform phase over the entire incident

plane. With increasing angle, k
x

approaches the incident material wavenumber. Note

that because the wavenumber is inversely proportional to the speed of sound, the trace

sound speed on the surface is larger than the speed of sound in air for all non-grazing

(✓ < 90�) angles.

Figure 3.1. Plane wave incidence on a plane surface. An incoming
wave with k = !/c = 2⇡/� at an angle ✓ will have a trace wavenumber
on the surface of k

x

= k sin(✓).

A purely real value of k is typical of the wavenumber of a plane wave, thus repre-

senting simple phase change with distance. For a complex k value, represented as the

sum of the real and imaginary components ~k
r

+j~k
i

, the plane wave equation becomes:

p = Aej(
~

k

r

+j

~

k

i

)·~x = Aej
~

k

r

·~xe�
~

k

i

·~x , (3.4)

with the imaginary portion, k
i

= =(~k), used to represent the exponential decay or

growth of an evanescent wave. For these waves, the envelope of the pressure amplitude

will be increasing or decreasing (for our purposes ”decay/decrease” will henceforth

be used in lieu of accounting for both possible signs of k
i

) with distance (away from a

defined origin) in the direction of propagation. The ratio of the imaginary component,
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k
i

, to the real component, k
r

, defines how much decay occurs over each period of

oscillation. Over a wavelength of � = 2⇡/k
r

the phase increases by 2⇡; when the

wavenumber is complex, the wave decays by a factor of e�2⇡k
i

/k

r per wavelength (for

a 1% ratio of imaginary to real component, a factor of 0.93 per wavelength).

A sample of a wavetype with complex wavenumbers, as viewed in the direction of

propagation, is shown in Figure 3.2. For a negative value of k
i

, the wave will decay

with distance; a positive value of k
i

will represent an increasing wave amplitude.

Figure 3.2. The e↵ect of complex wavenumbers on waveform shape.
The undamped wave is shown in the left plot. A 1% damping (center
plot) will cause the amplitude to decrease over distance, while a 1%
negative damping (right plot) will cause the amplitude to increase
over distance.

3.1.2 Generation of Evanescent Waves Using Complex Angles

A complex angle of propagation can be used to represent another type of wave

that satisfies the wave equation. The sine or cosine of this complex angle will result in

complex wavenumber components, with the resulting wavenumber obeying the wave
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equation. The complex directional wavenumbers k̃
x

and k̃
z

, are determined by the

sine and cosine of a complex angle ✓̃ = ✓
r

+ j✓
i

:

k̃
x

= k sin(✓
r

± j✓
i

) = k sin ✓
r

cos(j✓
i

)± k cos ✓
r

sin(j✓
i

) =

k sin ✓
r

cosh ✓
i

± jk cos ✓
r

sinh ✓
i

k̃
z

= k cos(✓
r

± j✓
i

) = k cos ✓
r

cos(j✓
i

)⌥ k sin ✓
r

sin(j✓
i

) =

k cos ✓
r

cosh ✓
i

⌥ jk sin ✓
r

sinh ✓
i

,

(3.5)

yielding a real component in the direction of propagation and an imaginary component

that is normal to the direction of propagation, as evidenced by the cos(✓
r

) component

in the imaginary part of sine of the complex angle, and a similar sin(✓
r

) term in the

cosine. For small imaginary angles, the hyperbolic cosine is close to 1; therefore,

the resulting directional component of the angle (the real component of the cosine

of the complex angle) will only deviate slightly from the direction of propagation for

a purely real angle. The imaginary component of the sine or cosine of the complex

angle specifies the direction of decay of the evanescent wave, with the hyperbolic sine

of the imaginary component indicating the rate of decay.

Because the complex angle follows the standard trigonometric identity sin2(✓̃) +

cos2(✓̃) = 1, the use of the complex angle allows the wave propagating at that angle

to continue to obey the wave equation, which is satisfied by the resulting directional

vectors being equal to the wavenumber in the material:

k̃2
x

+ k̃2
z

= k2 sin2(✓̃) + k2 cos2(✓̃) = k2 , (3.6)

which is an essential component for integrating evanescent waves into existing theory.

Note that a complex angle acting on a real wavenumber gives a very di↵erent result

than a complex wavenumber; as shown in Figure 3.3, a complex angle results in a de-

cay perpendicular to the direction of wave propagation, while a complex wavenumber

(and a real angle) decays in the direction of propagation. For a complex value of the

speed of sound, c, which is typically used to model damping in lossy materials, the
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wave equation will be satisfied by a complex wavenumber value. When using com-

plex angles, the imaginary component of the wavenumber transverse to the direction

of propagation represents a decay per wavelength in the direction perpendicular to

the propagation direction; higher wavenumber magnitudes will result in faster de-

cay per distance than lower wavenumbers for the same complex angle (note that the

wavenumber is proportional to frequency).

Figure 3.3. The e↵ects of a complex angle of propagation (left) com-
pared to complex wavenumber (right). The left pressure distribution
is a real wavenumber with a complex angle, causing a decay normal to
the direction of propagation. The right distribution shows a complex
wavenumber propagating along a real angle; the decay is along the
direction of propagation.

When incident upon a surface, an evanescent wave’s trace pressure decays with

distance over the surface. Figure 3.4 compares the resulting trace pressure distribu-

tions of conventional plane and evanescent plane wave fields. Since our concern is

with interaction occuring at a material interface, generation of the pressure distribu-

tion through a volume of space is incidental; in Chapter 4 methods for generating

these distributions on the surface using non-plane wave sources will be explored. The
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use of complex angles is a convenient way to express how these pressure distributions

behave through the interface.

Figure 3.4. The resulting trace pressure generated by incident plane
and evanescent waves upon a surface. The upper plots show propaga-
tion over two-dimensional space above the incident plane, while the
bottom plots show the trace pressure distribution at the z = 0 surface.
While the trace pressure of the 30 degree incident plane wave shown
on the left does not decay over distance, the resulting trace pressure
of the 30 + .1j degree incidence plot on the right decays along the
plane surface.

3.1.3 Pressure and Velocity Phase Di↵erences in Evanescent Waves

So far we have only discussed classification of evanescent waves by their change

in amplitude over distance. However, evanescent waves can be discerned at a single

point in space by the di↵erence in phase between the wave’s pressure and velocity.

The velocity along the direction of propagation, v, of a plane wave is:

~v =
1

j!⇢

dp

d~x
. (3.7)
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Given the plane wave pressure equation in Equation 3.1, the velocity along the direc-

tion of propagation will be:

v =
k̃

!⇢
p , (3.8)

and the di↵erence in phase between p and v will be equivalent to the phase of the

wavenumber, \k̃. For a complex wavenumber, k̃ = k
r

+jk
i

, the resulting phase angle,

�, is equal to:

� = \k̃ = arctan

✓
k
i

k
r

◆
. (3.9)

From this equation, it can be seen that there is no phase di↵erence between

the pressure and velocity of a classical plane wave with k̃ = k
r

, and a 90 degree

di↵erence for a purely imaginary angle of propagation k̃ = k
i

. For a complex angle of

propagation, the phase di↵erence between the velocity and pressure of a evanescent

wave will vary between 0 and 90 degrees, with larger phase di↵erences corresponding

to a more signficantly-decaying wave.

The use of complex angles provides a way to simulate waves with evanescent

propagation patterns, and can be used to express refraction characteristics, which is

a key component of wave transmission across an interface.

3.2 Evanescent Wave Transmission Across An Interface

3.2.1 Theory and Principles

In a fluid, which cannot sustain shear stress, the only type of wave that can propa-

gate is a longitudtinal wave, where the particle velocity of the wave is in the direction

of propagation. Such waves are also known as compressional waves because the re-

sulting pressure, p, causes compression and expansion as the wave propagates. A solid

can sustain shear stress and has a stress vector, ~�, instead of a single pressure; there-

fore, an additional wavetype with speed of propagation, b, is added that accounts for
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shear motion normal to the direction of propagation. In a three-dimensional analysis,

the shear wave can have components of stress and velocity in independent directions

normal to the direction of propagation; for our purposes in a two-dimensional formu-

lation, the shear wave stress will only have a single amplitude, �
t

. The compressional

wave will have a stress, �
l

, which is equivalent to the pressure p in a fluid. Both

compressional and shear waves are present in a solid material, and both must be

accounted for in fluid-solid propagation. There are additional wavetypes that may

be present in solid materials, such as Lamb waves that cause flexural and dilitational

motion; these waves result from the coupling of the pressure and shear waves in con-

strained materials. Because these are geometry-dependent, they are not considered

in this formulation.

The acoustical impedance of a material is the ratio of stress � (for fluids, the

scalar �p may be used to designate the pressure; note that � is conventionally the

negative of p) over the particle velocity, v, of a propagating wave in the material. For

a solid or fluid, the characteristic impedance Z is:

Z =
�

v
= ⇢c, (3.10)

where ⇢ is the density of the material (⇢0 and c0 will be used as the density and

speed of sound of air, respectively, with the ‘0’ subscript representing the material

properties of incident acoustic waves in air throughout this document). A material

that supports compressional and shear waves will have impedances for each wavetype,

proportional to their propagation speeds. Table 3.1 shows the wave speed and density

for several common materials.

Ideal energy transmission will occur between materials of equivalent impedance;

for interfaces with a large impedance di↵erence, most of the energy in a wave will

reflect back into the incident material. For typical air-solid interaction, the impedance

di↵erence is several orders of magnitude, and a very small amount of the energy is

propagated into the material even before accounting for refraction of the wave.
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Table 3.1. Density and wave speed of materials of interest for
impedance calculation.

Material

Density
Compressional Shear

wave speed wave speed

⇢ c b

kg/m3 m/s m/s

Air 1.2 343 N/A

Water 998 1,480 N/A

Aluminum 2,700 6,110 3,040

Steel 7,850 5,850 3,190

Polycarbonate 1,160 1,700 1,410

Similar to a material’s wavenumber, the impedance is a scalar representing the

properties in the material, which can be represented in a propagating wave as vector

quantities oriented along the direction of propagation. The magnitude of a wave’s

impedance vector is the material impedance, and each component’s amplitude is a

function of the angle of propagation. In a fluid, the pressure is a scalar quantity, and

the velocity of the wave is oriented along a vector; therefore, the wave impedance’s

components will be oriented similarly to the velocity’s. For a surface in the x � y

plane with a normal vector oriented along the ẑ axis (as will be considered in the rest

of this formulation), the impedance normal to the material is:

Z
z

=
p

v
z

=
p

|~v| cos ✓ =
Z

cos ✓
. (3.11)

Impedance-matching between an incident wave and a larger-impedance material can

therefore be performed by changing the angle of the incidence of the wave. However,

for most air-solid interfaces with large material impedance di↵erences, the angle that

will match the normal impedances is extremely close to grazing, making it physically

impractical to implement. Even with the ideal angle of incidence required to obtain
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an impedance-matched system, the angle of propagation for the transmitted wave

due to refraction at the interface can reduce the e↵ective energy propagation into the

material.

A di↵erence in the speed of sound between two materials causes refraction across

the interface. The speed of any propagating waves will be constant parallel to the

surface: i.e., the trace wave speed is common between the incident and transmitted

media. Therefore, for a wave incident at an angle to the surface: the resulting angles

of the compressional and shear waves can be calculated from Snell’s law:

c0
sin(✓0)

=
c1

sin(✓1)
=

b1
sin(�1)

, (3.12)

where c1 and ✓1 are the compressional wave speed and propagation angle of the

transmitted wave, respectively, and b1 and �1 are their shear equivalents. The e↵ect

of refraction across the surface is that the angle of propagation into a higher-speed

material will be a larger than that of the incident wave.

For a wave incident upon a plane surface, the angle of incidence determines the

k
x

component on the surface; this component is the same for both the incident and

transmitted waves, so k
x

= k1x = k0x: i.e.,

k0 sin ✓0 = k1 sin ✓1 = 1 sin �1 . (3.13)

The resulting k1z of the transmitted wave is determined by calculating the re-

maining component of the wavenumber vector:

k1z =
q

k2
1 � k2

x

= k1 cos ✓1 , (3.14)

and the reduction in k
z

due to the wavenumber changes across an interface can be

seen as another aspect of refraction.

The formulation of k
z

as the remaining component after removing the trace

wavenumber is helpful to understand subsonic propagation. When the trace wavenum-

ber is higher than the material wavenumber, the trace speed of sound on the surface
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is lower than the material wave speed. In this case, the wave component propagating

into the material is supersonic (faster than the material wave speed), and will prop-

agate like a conventional plane wave. If the trace wavenumber exceeds the material

wavenumber, the resulting wave into the material is subsonic; the wave will propa-

gate parallel to the interface, but will be evanescent and create a near-field pressure

distribution along the interface. A subsonic wave producing an evanescent pressure

distribution will not propagate energy into the material. In the supersonic region, the

angle of propagation is entirely real; the shift from supersonic to subsonic propagation

is the shift from a real to complex angle (where the real component of the angle will

always equal 90�). The critical angle, ✓0c, for an incident wave where the resulting

wave into the material becomes subsonic is:

✓0c = arcsin
c0
c1

. (3.15)

For air-solid interfaces, this angle is very small; for example, for a ratio of wave

speeds c1/c0 = 10, the critical angle is 5.7 degrees. For angles greater than the

critical angle, the transmitted angle into the material is complex, and the resulting

normal wavenumber into the transmitted material will be imaginary.

The evanescent waves generated by complex angles increase energy propagation

by decreasing the refracted real angle and allowing for wave propagation at angles

higher than the critical angle. Figure 3.5 shows the change in both real and complex

components of a refracted angle, ✓1, from a complex incident angle, ✓0, across an

interface with c1/c0 = 10. The addition of an imaginary component to the angle

eliminates the critical angle criterion. The refraction of a complex angle will asymp-

tote towards 90�; adding only a small imaginary component to the complex angle

causes significant motion away from grazing. For example, an =(✓1) value of 1 causes

the refracted angle at 30� to shift from grazing to 37�. However, the imaginary com-

ponent increases with refraction as well; the addition of the imaginary component to

the angle causes an increase in the imaginary component of the propagating angle

from 1.3 (which occured at grazing) to 1.8.
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Figure 3.5. Complex angle refraction of the transmitted wave
✓̃1 = ✓

r

� j✓
i

across an interface with c1/c0 = 10. The left plot is
<(arcsin(c1/c0 sin ✓̃0)), while the right plot is =(c1/c0 arcsin(sin ✓̃0)).

Even with a reduction in the refracted angle due to the use of complex incident

angles, the increase of imaginary components will create additional decay in the prop-

agating wave. By calculating the energy decay with distance across the interface, we

can more accurately see the e↵ects of the evanescent wave. The calculation of in-

tensity would include both the pressure transmission coe�cient and the e↵ect of the

complex angle in wave transmission.

The calculated intensity transmission coe�cients are functions of the material

impedances and incoming angles of the wavetypes in the system. Considering both of

these factors will yield a full accounting of the e↵ects of evanescent waves on energy

transmission across an interface.
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3.2.2 Fluid-Fluid Interface

We will begin by considering a fluid-fluid interface, since it is a simpler system with

only one wavetype in each material. Our example system will be an air-fluid interface

where the theoretical fluid has speed of sound c1 = 10c0 and density ⇢1 = 1000⇢0.

At the fluid-fluid interface there are three waves to consider: the incident wave

incoming at an angle ✓̃0 of unit amplitude, the reflected wave in the incident fluid

at an angle �✓̃0 with amplitude R, and the transmitted wave at angle ✓̃1, computed

from Snell’s law as a function of the incoming angle and two fluids’ speed of sound,

and amplitude T . For an interface in the x � y plane with a normal ẑ, the material

states across the interface remain constant:

p1(0) = p0(0) ; v1z(0) = v0z . (3.16)

Considering the incident, reflected, and transmitted waves in these formulations

yields:

T = 1 +R ;
T

Z1/ cos(✓̃1)
=

R� 1

Z0/ cos(✓̃0)
, (3.17)

and these two boundary conditions can be used to solve for the transmitted wave

amplitude T :

T =
2Z1/ cos(✓̃1)

Z1/ cos(✓̃1) + Z0/ cos(✓̃0)
. (3.18)

Note that each additive term in the equation is equivalent to the normal impedance in

the fluids. The amplitude of T with incident angle in a classical system, as shown in

Figure 3.6, is nearly 2 for all incident angles due to the dominance of the impedance

of water. Above the critical angle, T is equal to 2, but the transmitted angle will be

imaginary and no energy will propagate. At incident angles extremely close to graz-

ing, the influence of the incident impedance will reduce the transmission coe�cient;

however, there is still no energy propagation into the material.
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Figure 3.6. Pressure transmission coe�cient T for plane wave prop-
agation into a fluid.

For complex ✓0, the pressure transmission coe�cient will decrease with increasing

imaginary angle component. A plot of the transmitted pressure amplitude is shown

in Figure 3.7, which shows that the maximum values of transmission occur at real,

grazing angles.

The pressure transmission coe�cient does not account for the resulting velocity

of the transmitted wave, which is necessary to discern the energy propagating into

the system. Development of an intensity transmission coe�cient, which will properly

account for the energy transmitting across the interface due to both the pressure

transmission coe�cient and the complex angle of propagation, is therefore necessary

to compute the sound power transmitted.

The intensity of a wave is computed from the pressure and velocity at that point:

~I =
1

2
<(p(~x)~v⇤(~x)) , (3.19)
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Figure 3.7. Pressure transmission coe�cient T for fluid-fluid system.

where ~v⇤ is the complex conjugate of the velocity. This relationship accounts for both

the pressure and velocity amplitudes (which are related by the impedance) as well as

the phase relationship between the pressure and velocity.

The velocity in the ẑ direction of a plane wave is given by Equation 3.7; for a plane

wave with the pressure distribution shown in Equation 3.1 (note that the wavenumber

vector has been expanded to it’s component terms), the resulting velocity is:

v
z

=
k
z

!⇢
p , (3.20)

and the resulting general equation for intensity in the plane wave normal to the surface

is:

I
z

=
1

2
<
✓
k
z

!⇢
pp⇤

◆
. (3.21)

For a real incident angle, the intensity equation simplifies to the ratio of the mean

square pressure over the material impedance:
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I
z

=
|A|2

2⇢c
cos ✓ ; ✓ = <(✓) , (3.22)

where |A|2 is the magnitude squared of the complex amplitude, |A|2 = AA⇤. For

subsonic wave propagation (a complex angle with a 90 degree real component), the

wavenumber, k
z

, in the ẑ direction will be purely imaginary, and the intensity in the

wave will be equal to zero. For a complex angle of incidence, ✓̃0 = ✓0r + j✓0i, the

resulting intensity in the wave will be:

I
z

=
|A|2<(k

z

)

2!⇢
e2=(k

z

z�2k
x

x) . (3.23)

The intensity transmission coe�cient across an interface in the ẑ direction, I
T

,

resulting from a unit incident pressure amplitude is:

I
T

=
I1(z1)

I0(z0)
=

|T |2<(k1z)⇢0
<(k0z)⇢1

e2=(k0zz0�k1zz1) , (3.24)

and for the intensity transmission directly across the interface, z0 = z1 = 0, the

intensity transmission coe�cient can be simplified to:

I
T

=
I1(0)

I0(0)
=

|T |2=(k1z)⇢0
=(k0z)⇢1

, (3.25)

with the transmission coe�cient TC in decibels equal to:

TC = 10 log(I
T

) , (3.26)

which is the inverse of the transmission loss.

The inclusion of an imaginary angle component become beneficial when consider-

ing intensity transmission across the interface. The intensity transmission coe�cient

as a function of real and complex angle is plotted in Figure 3.8. The plot shows

increased intensity transmission with increasing imaginary angle component; for ex-

ample, an increase in imaginary angle component from 0.001 to 0.3 causes 23.6 dB of

increase to the transmission coe�cient at a 30 degree incident angle.
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Figure 3.8. Intensity transmission coe�cient TC variation for a fluid-
fluid system with a complex angle of incidence.

3.2.3 Fluid-Solid Interface

Wave propagation at a fluid-solid interface will generate a reflected pressure wave

in the incident fluid and transmitted shear and pressure waves in the transmitted

solid, with the shear amplitude B and a wavenumber . At the fluid-solid material

interface, pressure and velocity are conserved across the boundary. Because a fluid

wave cannot sustain shear, the shear stress on the surface is zero. Note that this

does not mean the shear wave amplitude is zero; the compressional wave will induce

a shear stress on the surface when propagating at a non-normal angle and the shear

wave stress is generated to cancel out this surface stress. The three state relationships

at the interface are:

p0(0) = ��
z

(0) , 0 = �
x

(0) , v0z(0) = v
z

(0) . (3.27)

For an incident wave with unit pressure amplitude, the resulting transmitted pressure

amplitudes into the material (as calculated by Brekhoshovikh [3]) is proportional to

the angles of propagation and the normal impedances at the surface:
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Z
z

=
⇢c

cos(✓0)
; Z1z =

⇢1c1
cos(✓1)

; Z1x =
⇢1b1

cos(�1)
. (3.28)

For a unit amplitude incident wave, the amplitude of the normal stress propagating

into the material is the transmission coe�cient T
L

:

T
L

=
2Z1z cos(2�1)

Z1z cos2(2�1) + Z1x sin
2(2�1) + Z

z

, (3.29)

while the resulting shear wave transmission coe�cient T
S

is:

T
S

= � 2Z1x sin(2�1)

Z1z cos2(2�1) + Z1x sin
2(2�1) + Z

z

. (3.30)

The pressure transmission coe�cient for a real angle has several distinct charac-

teristics due to the interplay of the compressional and shear waves. Figure 3.9 shows

the pressure transmission coe�cient in logarithmic form (TC = 20 log(T
L,S

) for an

interface with c1/c0 = 10, b1/c0 = 7 and density ratio ⇢1/⇢0 = 1000. There are sev-

eral peaks in the values that would appear to indicate avenues of energy transmission.

The small spike in T
L

at 5.7 degrees is due to the critical angle of the compressional

wave,which causes a maxima in the numerator of T
L

. The dip at 5.8 degrees is caused

by a minima in the numerator when cos(2�1) is equal to zero. The critical angle for

the shear wave is 8.2 degrees, where there is a discontinuity in both the T
L

and T
S

value. The peak near 9.4 degrees is due to impedance cancellation (which occurs af-

ter the critical angle and �1 is complex) between the transmitted pressure and shear

wave, minimizing the denominator common to both terms. However, most of these

features are at angles beyond the critical angles for both the compressional and shear

waves, and there is very small velocity into the material.

Intensity in the solid is calculated in a way similar to Equation 3.23, with the

appropriate wave amplitude and wavenumber in place for the compressional or shear

wave:

I
L,z

=
|A|2<(k

z

)

2!⇢
e2=(k

z

z�2k
x

x) . (3.31)
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Figure 3.9. Transmission coe�cients, 20 log(T
L

) and 20 log(T
S

), for
a system with wave speed ratio c1/c0 = 10 and density ratio ⇢1/⇢0 =
1000.

I
S,z

=
|B|2<(

z

)

2!⇢
e2=(

z

z�2
x

x) . (3.32)

Because intensity is a measure of energy, it should balance across the interface:

i.e., the total power incident on the surface minus the intensity reflected above the

surface should equal the intensity transmitted below the surface in longitudinal and

shear waves. The model above can be verified by accounting for this intensity. The

magnitude of the reflected wave component, R, is calculated as:

R =
Z1z cos2(2�1) + Z1x sin

2(2�1)� Z
z

Z1z cos2(2�1) + Z1x sin
2(2�1) + Z

z

. (3.33)

The reflected intensity travels away from the interface; therefore, the net intensity

above the interface will be the intensity of the incident wave minus the intensity of

the reflected wave. Figure 3.10 shows the total intensity above and below the fluid

interface for both a classical and evanescent wave. That the intensity is the same
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above and below the interface across the incident angle range serves as verification

that the model is properly accounting for energy in the system.

Figure 3.10. Net normal intensity above and below the fluid-solid
interface, with the incident and reflected waves contributing to the
intensity above the interface and the longitudinal and shear transmit-
ted waves contributing to energy below the interface.

The intensity transmission coe�cient across the material interface used previously

(c1/c0 = 10, b1/c0 = 7 and ⇢1/⇢0 = 1000) is shown below in Figure 3.11. This inten-

sity transmission is that immediately across the interface, and will not represent the

e↵ect of the evanescent component penetrating further into the material. The lowest

complex incidence angle value shown is 0.001, as a purely real value will be equal to

zero beyond the critical angle. The use of complex angles expands the transmission

peaks (such as those at 10 Hz) while allowing for energy transmission across the entire

spectrum. While the complex angle does not provide a substantial benefit below the

critical frequency (the warm area to the far left of the plot), expansion of the realm

of intensity transmission beyond the near-normal angles will allow for more varied

sources of excitation.
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Figure 3.11. Intensity transmission coe�cients at 1000 Hertz across
the interface for the compressional (left) and shear (right) waves due
to a complex angle of the incident wave.

The intensity transmission coe�cient calculated at a depth of one meter below

the material interface is shown in Figure 3.12. This transmission coe�cient shows the

negative e↵ects associated with the imaginary angle of refraction. There is significant

intensity lost into the system, particularly above the critical angle, and options for

ideal intensity transmission are limited to smaller angles. However, there is still

transmission above the critical angle, and the pressure transmission peak near 10

degrees provides significant transmission.

The use of complex angles to generate evanescent waves has been shown, in theory,

to increase energy transmission across the air-solid interface. While using complex

angles introduces additional imaginary components to the refracted angle of the prop-

agating wave, the change in real angle of propagation will cause energy to propagate

further into the material. An approach for intensity propagation taking into account

the pressure transmission and the resulting intensity due to the angle of transmission

must be formulated to allow for a means to see the e↵ect of complex angles on energy

transmission across the interface.



36

Figure 3.12. Intensity transmission coe�cients for a depth of 1 me-
ter into the material for the compressional and shear waves due to
complex angles.

The use of complex angles can increase intensity transmission at a high-impedance

interface, particularly beyond the critical angle of sound transmission. By using the

evanescent components of a monopole, we can show that these theoretical considera-

tions can be seen in experimental verification.

3.3 The Monopole as an Evanescent Wave Source

Evanescent pressure distributions with well-defined characteristics are not gener-

ated by typical sound sources. While some sources may generate evanescent waves,

they will be unique to the source and di�cult to control. Therefore, it is helpful to ex-

plore evanescent wave properties of a simple source, the acoustic monopole, to provide

a basis for experimental exploration of the theory of evanescent wave transmission.
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3.3.1 Theory

An acoustic monopole is a fundamental source, in which pressure generation from

a single point radiates equally in all directions. The pressure at a distance R from

the source is equal to:

p =
ejk0R

R
, (3.34)

which shows a 1/R decay in pressure over distance. Figure 3.13 shows the pressure

of a monopole in space and along the radius from the monopole.

Figure 3.13. Monopole pressure distribution in the plane containing
the monopole, showing the real component of the pressure for a 1000
Hz monopole in air (a wavenumber of 18.3 radians per meter), in
two-dimensional (left) and in one-dimensional space (right) along the
radius. The maximum pressure peak at r = 0 has been cut o↵ at 10
Pa to show detail.

When the radiated pressure distribution is projected onto a plane o↵set at a

distance z0, the resulting distance from the origin R will be:

R =
q

x2 + y2 + z20 , (3.35)
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and the radius will increase from a minimum value of z0 along the plane. A larger z0

value will cause a reduced increase in R per length along the plane, which will reduce

the amount of decay per distance in the trace pressure distribution. Furthermore, the

trace wavelength along the plane will decrease to the material wavelength 2⇡/k as

R increases; a higher z0 value will cause less variation in the trace wavelength. The

result of the decrease in decay rate and trace wavelength will cause the monopole

to approximate a plane wave. Sample trace pressure distributions for both a small

and large stando↵ distance are shown in Figure 3.14. The 10 centimeter stando↵ has

significant decay near the origin and shorter wavelengths, while the 2 meter stando↵

has less decay and the initial wavelengths are closer to the material wavelength.

Figure 3.14. Trace pressure distributions (real component of pres-
sure) of a monopole at a z0 distance of 10 and 200 centimeters for a
wavenumber of 18.3 radians per meter. The shorter stando↵ distance
displays similar properties to an evanescent wave.

Due to the 1/R decay (compared to an exponential decay) and the change in

wavelength, a monopole pressure distribution is not equivalent to an evanescent plane

wave. However, it does display evanescent properties.
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The wavenumber spectrum, which can be calculated by the Fourier transform of

the spatial pressure distribution:

P (k) = F(p(x)); , (3.36)

of a monopole’s trace pressure distribution consists of distinct regions of evanescent

and non-evanescent waves. The energy in the wavenumber region below k0 is super-

sonic, while the energy above k0 is subsonic and generates evanescent waves. Figure

3.15 shows the wavenumber spectrum for the two pressure distributions shown in

Figure 3.14. With increasing stando↵ distance, the resulting WN spectra has less

energy in the evanescent region. Figure 3.16 shows Q, the ratio of evanescent com-

ponent to non-evanescent component in the trace pressure distribution as a function

of normalized stando↵ distance:

Q(kz0) =

R1
k0

P 2(k, z0)
R

k0

0 P 2(k, z0)
(3.37)

A monopole produces significant evanescent components, and these components

can be decreased by increasing the stando↵ distance between the monopole and the

incident plane. Using these properties of the monopole, the e↵ects of evanescent

waves on transmission of energy into the plate can be seen.

3.4 Experimental Measurement of Monopole Evanescent Components

The monopole provides a source of evanescent waves, which may propagate ad-

ditional energy into higher impedance materials. The pressure distribution of a sim-

ulated monopole source was inspected for the presence of evanescent waves using

acoustical holography. Once the evanescent waves were verified, the distribution was

used incident upon a panel to see the e↵ects of the evanescent wave transmission into

the solid material.
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Figure 3.15. Wavenumber spectra of the trace pressure distribution
from a monopole radiating at 100 Hz for stando↵ distances of 10 and
200 centimeters. The peak in the plot is at k0; energy above this peak
is subsonic, with the closer stando↵ having more subsonic energy than
the further stando↵.

3.4.1 Test Setup and Methodology

The panel used for testing was a 9.4 millimeter (nominally 0.375 inch) thick poly-

carbonate panel. The panel was 60 centimeters long by 50 centimeters high, with

holes drilled in each corner at 12.7 millimeters (0.5 inch) from the edges. These

holes were used to suspend the plate in a 113 centimeter square wooden frame. This

mounting method was used to minimize the e↵ects of mounting on the vibration of

the plate, as well as to minimize reflections from the mounting. The plate was sanded

on one side to produce an opaque surface for improved laser vibrometer focusing and

measurement.

Vibration properties for the plate were measured by exciting the panel with a

PCB 712A02 stack actuator equipped with a 100 gram add-on mass. The resulting

force into the system was measured with a PCB 208A02 force transducer mounted

between the actuator and the panel surface, and was recorded using the data acqui-
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Figure 3.16. Ratio Q of evanescent to subsonic to supersonic com-
ponents in the trace pressure distribution of a monopole incident on
a plane as a function of normalized monopole stando↵ distance. The
increase in stando↵ causes a reduction in evanescent energy.

sition system from the laser vibrometer. This actuactor-transducer arrangement was

mounted in the corner of the panel during vibration measurements to classify modes

and wavetypes in the panel.

Vibration was measured using the Polytec PSV 400 scanning laser vibrometer and

data acquisition system. The vibrometer allows for automated scanning of points

along a surface. Vibration was recorded from 0 to 4 kilohertz, along with the output

from either the force transducer or microphone near the source (depending on the

test).

The vibrometer data acquisition, which was used for all vibration measurements,

measured a bandwidth of 4,000 Hertz at 2.5 Hz resolution, with 50 averages per point.

A total of 221 points were measured, constituting 13 rows and 17 columns across a

54 by 42 centimeter rectangle on the panel. The resulting measurement parameters

allow for a wavenumber resolution of 11.63 radians per meter (rad/m) from -69.81

rad/m to 58.18 rad/m in the horizontal direction and a resolution of 15.14 rad/m
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from -121.12 to 105.98 rad/m in the vertical direction. More information about

wavenumber decomposition and analysis can be found in Section 5.2.

The monopole pressure distribution was generated using the Herrick Laboratories

half-monopole source. This source is a 1 meter long, 2.54 cm (1 inch) diameter copper-

lined PVC pipe attached to a CIE PD30T 30W compression driver with a 2.54 cm

(1 inch) speaker diameter. The length of PVC pipe ensures plane wave propagation

in the tube, that, when radiating from the open end of the pipe, produces a near-

monopole-like pressure distribution in the hemispherical space centered at the pipe

opening. The validity of the resulting pressure distribution will be discussed in the

following section. While this source will produce significant harmonics at the half-

wavelength frequencies of the pipe, it is suitable for single-frequency analysis. The

source was driven using a General Radio 1381 Random-Noise Generator at 5 kHz and

a QSC 1100 amplifier.

Measurement of sound radiation from the half-monopole source was performed

using a Brüel and Kjær 4189 microphone placed immediately behind the pipe opening,

approximately 2 centimeters from the surface. While this location is less-than-ideal

for measuring the output spectra of the monopole, it was chosen so as not interfere

with the radiation pattern. Additional testing showed that the spectra obtained from

this location matched closely with the spectra obtained from the pipe opening. The

microphone was connected to a Brüel and Kjær 2169 preamp and 5935 power supply,

and into the data acquisition system for the vibrometer.

For classification of the monopole’s sound radiation, the pressure distribution

was measured with a 64 microphone holography array, consisting of TMS T130C21

ICP microphones in an 8 by 8 square pattern, with each microphone separated from

its neighbors by 10 centimeters. The array provides wavenumber resolution of 8.97

radians per meter from -35.90 rad/m to 26.93 rad/m. In air, 35.9 radians per meter

occurs at 1,960 Hertz; the array should provide su�cient range to properly visualize

wavenumber spectra at frequencies below that. The array output was recorded using
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a VXI data acquisition system with custom MATLAB software for measurement and

analysis.

Testing was performed at distances between 35 and 145 millimeters from micro-

phone number 43, located in the 6th row (from the top) and 3rd column (from the

left) of the array. The source was measured o↵-center to allow for additional distance

to measure the decay in the sound field; a centered microphone would not have the

same range of distance data. A schematic of the setup is shown in Figure 3.17.

Figure 3.17. Setup and geometry for the monopole pressure radiation
using the holography array.

A schematic of the setup for measuring acoustical excitation of the panel is shown

in Figure 3.18, and a photo of the experimental setup is shown in Figure 3.19. The

monopole was positioned at the center of the panel and tested at various distances

from 2.2 centimeters to 20.2 centimeters. The resulting vibration was recorded us-

ing the vibrometer, and the resulting sound propagation was measured using the

microphones.
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Figure 3.18. Setup for panel excitation from a monopole. The
monopole produces a pressure distribution on the panel, and the re-
sulting vibration is measured using the laser vibrometer.

3.4.2 Results

For the purposes of brevity and clarity, all results will be presented at 1,000 Hertz.

This frequency is appropriate because it does not correspond to a mode of vibration

in the plate, and is representative of many other regions of plate vibration.

Two ”slices” of the wavenumber-frequency data, at the center of the horizontal

(left) and vertical (right) wavenumber domains, are shown in Figure 3.20. The vibra-

tion of the plate is dominated by a dispersive wave with a wave speed of approximately

200 m/s at 1000 Hz; this wave will be subsonic in air. The wavenumber spectrum

of vibration is shown in Figure 3.21, showing the concentration of energy in an oval

with major axes at 45.42 and 34.91 radians/meter (although the precise locations of

these peaks are within the resolution of the wavenumber measurement).
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Figure 3.19. Experimental setup for monopole-excited panel. The
monopole source is the forefront object, with the driver (light blue)
closest to the camera. The panel is mounted in the wooden frame; the
white surrounding material is Thinsulate, which is wrapped around
the frame to reduce reflections from the frame. The experiment took
place in the hemianechoic chamber, which reduces reflections from
other sources.

The pressure spectrum of the monopole shows a 1/R decay with distance (from

the monopole location), as seen by comparing the pressure at each measured point as

a function of the radius in Figure 3.22. The wavenumber spectrum of the monopole

pressure, shown in Figure 3.23 shows energy in a circle with radius of approximately

18 radians per meter, coinciding with theory. In addition, the pressure and intensity

from the monopole decay with the radius (from the monopole) and radius squared,

respectively.

The ratio of evanescent component to non-evanescent component (similar to what

is shown in Figure 3.16 for Equation 3.37) for the half-monopole source is shown in

Figure 3.24. Similar to a theoretical monopole, the half-monopole source shows a

reduction in evanescent component with increasing distance from the plane.
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Figure 3.20. Wavenumber-frequency plots of panel vibration at k
x

=
0 (left) and k

y

= 0 (right).

Figure 3.21. Two-dimensional wavenumber spectrum of panel vibra-
tion at 1000 Hz. Note that the scales for the k

x

and k
y

dimensions
are not equal. Note that the x and y axes are not equal.

The half-monopole source is therefore thought to be a resonable approximation

of a monopole for testing. While the evanescent componenents displayed by the
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Figure 3.22. Monopole pressure amplitude at the distances measured
by the holography array. The 1/R decay in pressure is clearly evident.

monopole cannot be represent a broad spectrum of complex angle components rather

than a single plane wave, they exhibit similar decay over distance, properties that

allow them to be an experimental stand-in for evanescent plane waves.

The resulting panel vibration due to acoustic excitation from the monopole source

is shown in Figure 3.25 for stando↵ distances of 22 and 202 millimeters. The 22

millimeter stando↵ shows significant vibration in wavenumber components above the

material wavenumber in air. While supersonic components in air would be able

to excite the panel vibration due to the presence of the slow flexural waves, such

excitation would be seen across a range of stando↵ distances, as the energy in the

supersonic domain does not decay as dramatically. However, the 202 millimeter

stando↵ does not exhibit these same characteristics. This is indicative of evanescent

wave propagation into the material.
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Figure 3.23. Wavenumber spectrum of the monopole sound radia-
tion at 63 millimeter o↵set. The assymetric nature of the wavenumber
spectrum is due to the o↵set measurement of sound pressure radia-
tion. The black circle indicates the material wavenumber in air of 18.3
rad/m; the wavenumber spectrum is clearly highest in this wavenum-
ber bin.

3.5 Conclusions

The use of evanescent waves has been shown, in theory, to increase energy trans-

mission across the air-solid interface. By representing evanescent waves using complex

angles, these waves can be input into classical formulations for energy transmission

across the air-fluid and air-solid interfaces. The evanescent wave will overcome the

critical angle that typically limits energy propagation, and allow for transmission

across a wider range of angles.

Beyond the critical angle, a plane wave’s intensity does not propagate into the sys-

tem, existing only as a surface pressure that rapidly decays. The use of the evanescent

angle does not increase the pressure transmission coe�cient, but reduces the refracted

angle, allowing for propagation of energy into the system. The use of complex an-

gles introduces an imaginary component to the refracted angle of the propagating
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Figure 3.24. Measured ratio of evanescent to non-evanescent compo-
nents for the monopole source at 1000 Hertz.

Figure 3.25. Wavenumber spectrum of monopole excitation for stand-
o↵ distances of 22 millimeters (left) and 202 millimeters (right). The
decreasing energy in the system, particularly at subsonic wavenum-
bers (which is demarcated by the dashed black line), shows the e↵ec-
tiveness of
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wave; this will cause additional decay into the system which should be accounted for

by measuring the intensity propagating into the system. An approach for intensity

propagation taking into account the pressure transmission and the resulting intensity

due to the angle of transmission must be formulated to allow for a means to see the

e↵ect of complex angles on energy transmission across the interface.

A monopole’s trace pressure distribution along a surface has significant evanes-

cent wave components; these components decrease with stando↵ distance between

the monopole and the plane (relative to the supersonic components typically seen).

However, a monopole source used to excite a high-impedance solid object will exhibit

these evanescent components in the resulting vibration of the solid object.
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CHAPTER 4. GENERATION OF NEAR-FIELD PRESSURE

DISTRIBUTIONS

The use of plane waves is convenient in theoretical formulations of fluid-solid trans-

mission because their trace pressure along a plane surface is a steady-state, fixed-

wavelength acoustical interaction. An evanescent wave, formed by incorporating an

imaginary component into the angle of incidence, will have a fixed decay that can be

used in theoretical formulations.

However, plane waves are impossible to generate from a simple sound source in a

free-field environment. While plane waves can be generated in confined spaces such

as tubes, or in certain conditions such as locally in the far-field of a monopole, such

cases are limited by the geometries and frequencies involved in the system. In order

to utilize typical sound sources in general cases, we need to be able to generate plane

waves to use as inputs to the material interface.

The focus of the work described in this chapter was on generating plane waves,

particularly evanescent waves, by using simple sources in a phased array. By adapt-

ing a previous model for the least-square fit of pressure distributions, an approximate

pressure distribution can be created by the phased array. An exploration of the factors

a↵ecting the generation of pressure distributions, including the incident wave param-

eters, source geometry, and amount of decay in evanescent waves, will be explored

here.

The model developed and analyzed here is for a two-dimensional sound pressure

distribution and array. While this does not provide a simulation of a true physical

setup, it will provide an overview of the geometric properties of the array and char-

acteristics of incident waves to produce pressure distributions on the surface. For a

simulation used in construction of an experimental array, a three-dimensional model
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should be created, which would incorporate the polar angle of the incident wave as

well as a length and number of sources along the additional coordinate. However,

construction of an experimental array should also take into account the possibility of

additional geometries and the angular dependence of physical speakers. The model

here is two-dimensional to reduce the complexity and allow for ease of analysis of the

simpler parameters.

4.1 Properties of Waves and Sources

In order to approximate a plane wave incident upon a surface and maintain its

relationships with a material interface, both the pressure and normal velocity of the

plane wave need to be preserved in the generated pressure distribution. Accurately

modeling these states, as well as the pressure generated by monopole and dipole

sources, for example, will allow for the development of a model to approximate plane

wave pressure distributions created by using multiple monopoles or dipoles.

4.1.1 Properties of Plane Waves

The properties of a plane wave that define the interaction at a material interface

are the pressure at the interface and the velocity normal to the interface. These

quantities must be constructed on the surface so as to simulate plane-wave interaction

with the surface.

A plane wave incident on a surface at an angle ✓ has a pressure distribution in

x� z space of:

p = Aejkxx�jk

z

z , (4.1)

where A is the pressure amplitude and k
x

= k sin(✓) and k
z

= k cos(✓) are the

directional wavenumbers derived from the material wavenumber k. The resulting

normal velocity can be derived from the pressure-velocity relationship:
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~v
z

=
1

j!⇢

@P

@z
~z = � k

z

!⇢
Aejkxx�jk

z

z~z = �cos(✓)

c⇢
Aejkxx�jk

z

z~z . (4.2)

For the purposes of our model, z = 0 and the variation of p and ~v
z

will be only

dependent on x.

If the trace pressure distribution is specified by a frequency and angle of incidence,

the resulting normal velocity into the surface is unique to that pressure distribution.

Therefore, the pressure distribution can be modeled, and the velocity should match

what is expected from an incident plane wave for that pressure distribution.

4.1.2 Properties of the Acoustic Monopole

The simplest acoustical source is the monopole, a point source of acoustic pressure

consisting of a dilating sphere (of diameter much smaller than a wavelength) with a

volume output of Q cubic meters per second. The pressure distribution from such a

monopole is:

p = �j⇢0c0
kQ

4⇡

ejkr

r
, (4.3)

where ⇢0 and c0 are the density and speed of sound in air, respectively, k is the

wavenumber, and r is the distance between the source and the field point. The

pressure therefore has solely a radial dependence, and decreases from the origin by

1/r. The velocity resulting from a monopole is:

~v
r

=
1

j!⇢

dP

dr
~r = �j

kQ

4⇡
(1� 1

jkr
)
ejkr

r
~r , (4.4)

where ~v
r

is oriented along the radial axis from the monopole. If the monopole is

located above the plane, the resulting normal velocity into the plane will be ~v
z

(x) =

�|~v
r

| cos(�)~z , where � is the angle between the normal to the plane and the line

between the monopole location and the point of incidence.

The trace pressure distribution along a plane surface resulting from a monopole

varies significantly depending on the stando↵ distance between the plane surface
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and the source. In the far-field where the 1/r decay of the sources is small, the

monopole’s pressure distribution looks like a non-evanescent plane wave - the trace

pressure distribution has a wavelength approximately equal to the wavelength of a

plane wave in air, and there is very little decay. However, in the near-field, the 1/r

decay creates an evanescent pressure distribution, though not one that conforms to an

exponential decay or that has a constant wavelength. The e↵ective wavelength also

changes along the surface, becoming shorter with increasing distance from the source.

As a result, a monopole outputs a spectrum of wavelengths and amplitudes which

vary according to the position of the point of incidence relative to the monopole.

4.1.3 Properties of the Acoustic Dipole

An acoustic dipole consists of two monopoles, 180 degrees out-of-phase, located in

close proximity. While two such monopoles occupying the same location would result

in complete cancellation, the monopoles forming a dipole are a short distance apart,

with the line between the two dipoles forming the “dipole axis”. The e↵ect of this

formulation is to produce angular variance of the output pressure, with a minima of

zero radiation normal to the dipole axis.

The dipole pressure, as calculated from an approximation of two monopole sources

seperated by a distance that is small compared to a wavelength, is:

p = �⇢0c0
k2Qs

4⇡

ejkr

r
cos(⇣) , (4.5)

where ⇣ is the angle relative to the dipole axis and s is the distance between the

two dipoles (each monopole in the dipole has a source with amplitude Q). In this

formulation, the dipole axis will be oriented normal to the plane containing the pres-

sure distribution. For the purposes of these calculations, s will be equal to 1/10th

of a wavelength or less. The output of a dipole is cylindrically symmetric about the

dipole axis, with positive and negative pressure regions to the front and back. The
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maximum radiated pressure is along the dipole axis, reducing with angle to zero at

the normal to the dipole axis.

The velocity created by the dipole is calculated in the same fashion as Equation

4.4, and shows the same relationship to the monopole’s velocity as the monopole-

dipole pressure relationship: i.e.,

v
r

= �j
k2Qs

4⇡
(1� 1

jkr
)
ejkr

r
cos(⇣)~r . (4.6)

Because a dipole is dependent on the cancellation between two monopole sources,

the e�ciency of the dipole radiation is much lower than that of a monopole by a factor

of sk cos(⇣); for s equal to 1/10th of a wavelength, this number has a maximum value

of 0.63 and the dipole will always be a less-e�cient radiator than a monopole.

The dipole is useful for analysis because it is a closer approximation of a real

source than a monopole. An unba✏ed speaker, for example, will exhibit dipole-like

behavior due to the alternating dilation and expansion of air on each side of the

speaker.

While a single monopole or dipole cannot generate plane waves, a phased combina-

tion of sources can be used to approximate an incident wave on a surface. By adding

pressure from multiple sources, we can approximate a desired pressure distribution.

4.2 Least-Squares Approximation of Pressure Distributions using Multi-

ple Sources

By phasing and amplifying each source in an array appropriately, the array can

be used to create an approximation of a plane wave on a surface. The quality of the

fit between the ideal and generated pressure distributions depends on many variables,

including the position and spacing of the sources, the type of sources used, and the

amount of decay in an evanescent wave.

A schematic of the situation modeled here is shown in Figure 4.1. A pressure

distribution along a plane is sampled along the surface over a distance L
x

(1,024 points
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were sampled in this model), thus creating an array of points, P (x
i

), representing an

incident wave of a particular frequency, f , and angle of incidence, ✓
r

+j✓
i

. The source

array is centered over the center of the target distribution, with N sources along a

line of length L located at Z0 above the plane.











Figure 4.1. Schematic of multi-source array used to fit pressure dis-
tributions, showing variables L

x

, f , ✓
r

+ j✓
i

, Z0, Ls

, and N .

The method for generating pressure distributions from multiple monopole sources

that is used as the basis for this calculation was first presented by Kirkeby and Nelson

[46]. Their formulation uses monopole sources; expansion of this model to allow for

dipoles sources may provide a more e�cient fit to the desired pressure distribution.

The Kirkeby and Nelson model comprises a system of linear equations of the form:

[P ]
i

= [H]
ij

[q]
j

, (4.7)

where q
j

is the complex amplitude (which incorporates a phase as well as a magnitude)

of the source located at ~x
j

, P
i

is the value of the desired pressure distribution at points

~y
i

, and [H] is a matrix that relates the pressure P (x
i

) and the monopole strength q
j

.

The elements of the matrix are:
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H
ij

=
ejkrij

r
ij

; r
ij

= |~x
i

� ~y
j

| . (4.8)

The solution for [q] yields the monopole phase and amplitude for a least-squared-

error with the pressure distribution. The resulting pressure approximation could be

calculated from the [q] vector by summing the resulting pressure of all the monopoles.

The monopole source strength, Q, as used in Equations 4.3 and 4.4 is:

Q
j

= j
4⇡

⇢0c0k
q
j

. (4.9)

For a dipole, a similar formulation is possible, with a slight modification in terms

of [H] to reflect the radiation properties of a dipole: i.e.,

H
ij

=
ejkrij

r
ij

cos(⇣
ij

) , (4.10)

where ⇣
ij

is the angle between ~x
i

and ~y
j

(i.e., the polar angle from the dipole axis).

Once q
j

has been defined as the monopole amplitude, the source strength, Q
j

, of the

dipole is:

Q
j

= j
4⇡

⇢0c0sk2
q
j

. (4.11)

In order to determine the degree to which the generated pressure and velocity

distributions fit the desired incident wave, fit coe�cients R
P

and R
V

are calculated

from the sum of the residual values at each x
i

point between the desired pressure P

(or V for R
V

) and the approximate pressure P̃ and the RMS value of the signal:

R
P

= 1�

sP
i

(P (x
i

)� P̃ (x
i

))2P
i

P (x
i

)2
. (4.12)

This fit coe�cient value is di↵erent from the coe�cient of determination in that the

sum of the squared value is always taken with respect to zero, the sum of a complete

period of a sine wave. For an oscillating value, the sum of the squares will yield a

value of R
P

that has a maximum value of 1, indicating that P̃ (x
i

) = P (x
i

) at all x
i

values. A value of 0.98 or higher would indicate a good fit of the pressure distribution.
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A value of 0 would be the theoretical minimum value obtained during a least-squares

curve fit.

Figure 4.2 shows example pressure distribution fits for a generic trace pressure

distribution. While the fit coe�cient 0.883 approximates the pressure distribution

well, the 0.999 fit is indistinguishable from the ideal pressure; the maximum di↵erence

among the 1024 point in that case is 0.0015, less than 0.2% of the wave amplitude.

Figure 4.2. Sample approximate pressure distribution for a plane
wave pressure distribution; approximate pressure distributions with a
fit of 0.883 and 0.999 are shown.

In simulating incident plane waves and the required multi-source generation, seven

variables come into play. The length of the pressure distribution, L
x

, will a↵ect the

distance that needs to be modeled, as well as accounting for the variance of in the

overall signal. The frequency, f , and angle, ✓
r

+j✓
i

, of the incident wave will determine

the surface wavenumber, with higher wavenumbers having more variation along the

surface and therefore being harder to approximate. An imaginary component of the

incident angle also determines the relationship between pressure and velocity. There

are N sources located at a height Z0 above the plane, and along a line of length L
s

centered above the pressure distribution. Table 4.1 summarizes these variables. Each
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of these variables a↵ects the resulting fit of the equation (expressed by R
P

and R
V

),

and should be considered.

Table 4.1. Table of variables applicable to multi-source arrays and
the desired pressure distribution.

Variable Name Variable Units

Length of Distribution L
x

meters

Frequency of Wave f Hertz

Angle of Incidence (Real) ✓
r

radians

Angle of Incidence (Imaginary) ✓
i

radians

Number of Sources N (none)

Array Stando↵ Z0 meters

Array Length L
s

meters

4.3 Input Parameter E↵ects on Plane Wave Fit Using Multi-Source Ar-

rays

Variations in the seven variables determining the fit of an incident plane wave

using a multiple source array e↵ect the fit quality of the resulting pressure and velocity

approximations. By restricting these variables to the important factors and relevant

values it is more easily possible to analyze a complex problem.

In order to reduce the number of variables modeled, we will assume that the pres-

sure distribution to be modeled, L
x

, is always 50 centimeters in length. Clearly,

greater lengths will be more di�cult to fit (depending on the complexity of the

pressure distribution), requiring more sources or a longer array; however, this is a

reasonable approximation for the size of a suspicious package.

Since the interest in our study is the linear region of wave propagation in air, our

analysis will be limited to frequencies below 20 KHz. The incident angle can vary
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between 0 and 90 degrees; however, previous analysis has shown that the significant

contributions of evanescent waves lie at lower angles of incidence.

The number of sources used will vary from 1 to 64; 64 channels would be allow

8x8-channel output cards to generate the array signals. It is unknown what stand-

o↵ distance will be requested; a maximum of 100 meters is assumed. Similarly, a

maximum source length of 15 meters will be used.

4.3.1 Incident Wave Parameters

Of primary importance is whether or not the trace pressure distribution generated

is properly modeling the normal velocity inherent in the incident plane wave. The

trace pressure distribution is a unique function of the angle of incidence and frequency,

and the appropriate velocity should follow if the pressure is fit correctly. However,

approximating the trace pressure from multiple sources will not necessarily yield the

appropriate velocity relationship.

For a plane wave distribution generated by 64 sources with a source o↵set 5 meters

from the plane and a span of 4 meters, the resulting fit coe�cient variation with angle

and frequency is given in Figure 4.3. While the pressure has a gradual transition in

the quality of the fit, the velocity transitions suddenly, with the good fit region of

velocity matching the good fit of the pressure. This correlation between matching

pressure and velocity at better regions of fit shows that fitting the pressure will allow

for accurate approximation of the normal velocity. However, poor fit of the pressure

will led to a lower-quality fit of the velocity. Therefore, only a high quality of fit of

the desired pressure will produce the proper chracteristics of an incident wave.

Figure 4.3 also shows the e↵ect of frequency and incidence angle on the ability of

the multi-source array to fit a desired pressure distribution. An increase of either the

frequency or angle of incidence will increase the variation across the desired region,

thus making a fit more di�cult. The border constituting the region of good fit

coe�cient appears to be defined by an inverse relationship between the sine of the
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incident angle and the frequency, sin(✓) / 1/f . This would seem to indicate that

the trace wavelength �
x

= c/(f sin(✓)) could serve as an indicator of correct fit;

however, Figure 4.4 shows the border plotted against a line of constant wavelength

fit. The wavelength plotted has been chosen to minimize the least-squares error

across the entire frequency range; it can be clearly seen that the border of good fit

does not follow the constant wavelength curve precisely. Because the wavelength of

the monopole varies with f , the fit coe�cient is not solely dependent on the trace

wavelength. For example, a 1 kilohertz wave with an incident angle of 20 degrees

(�
x

= 1 meter) will not have similar fit coe�cient properties (with respect to the

geometry of the system) as a wave of 500 Hertz with an incident angle of 43 degrees

(which has the same equivalent wavelength), because the resulting wavelength of

radiated sound from the monopole sources at 1 kilohertz are half the length of those

radiated by 500 Hertz sources.

Figure 4.3. Fit coe�cient variation for the pressure (left) and normal
velocity (right) with angle and frequency for a source array 5 meters
from the plane, with 64 sources spanning 4 meters.

An increase of the length of the source array will increase the quality of the fit,

as seen in Figure 4.5 for the geometry of Figure 4.3 except with a source span of 10
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Figure 4.4. Border of R = 0.98 fit plotted with best-fit line of trace
wavelength, �

x

= c/(f sin(✓)) = 0.135. The fit of the trace wave-
length curve shows that the trace wavelength is only an approximate
indicator of the good fit region.

meters. The increase in the quality of fit is possibly due to the additional sources

further out, which will produce more plane-wave-like behavior. The additional length

of the source array reduces the source density, but provides improved fit at higher

angles, which have a lower trace wavelength. This would indicate that there isn’t a

proportional relationship between source density and the trace wavelength that can

be fit by the array.

Increasing the stando↵ distance will reduce the quality of the fit; Figure 4.6 shows

the fit for a source array with a length of 10 meters and a stando↵ of 30 meters. The

same relationsip between the incident angle and frequency are present; however, the

fit coe�cients are much lower for similar angles and frequencies. The ”spikes” in angle

for good fit, which were present but not as prominent in the previous simulations, are

due to the poor fit of non-integer wavelengths in the simulation. An increase of the

pressure distribution length can shift these if needed.
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Figure 4.5. Fit coe�cient variation for the pressure (left) and normal
velocity (right) with angle and frequency for a source array 5 meters
from the plane, with 64 sources spanning 10 meters.

Figure 4.6. Fit coe�cient variation for the pressure (left) and normal
velocity (right) with angle and frequency for a source array 30 meters
from the plane, with 64 sources spanning 10 meters.
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The plots of fit coe�cient show the di�culty in fitting high frequency and high

angle-of-incidence waves. While additional geometry and source parameters may

improve the fit of pressure and velocity, the angle of incidence is a limiting parameter.

4.3.2 Geometry Parameters

As seen in the previous section, by decreasing the stando↵ distance or increasing

the source length, the quality of the fit can be improved. Fit coe�cient variation

with these parameters is shown in Figure 4.7 for an incident wave of 2 kilohertz at a

20 degree incidence angle, as modeled using 64 sources. There is a linear relationship

between the stando↵ distance and the source length for the border of fit coe�cients,

although significantly more source length is required to obtain an improved fit.

Figure 4.7. Fit coe�cient variation for the pressure (left) and normal
velocity (right) with stando↵ and source length for an incident wave
of 2 kilohertz at an incident angle of 20 degrees modeled using 64
sources.

For a higher frequencies, a substantially longer source length must be used to

approximate a plane wave, as seen in Figure 4.8. The lower slope of the good fit
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border equates the to need for a greater source length at increased stando↵s. For a

higher incidence angle, the quality of the fit decreases further, as seen in Figure 4.9.

Figure 4.8. Fit coe�cient variation for the pressure (left) and normal
velocity (right) with stando↵ and source length for an incident wave
of 5 kilohertz at an incident angle of 20 degrees modeled using 64
sources.

A study of the source geometry shows that source length and stando↵ distance

need to increase in tandem in order to maintain a good fit of the pressure distri-

bution. For higher frequencies and incidence angles, the proportional source length

increase with stando↵ becomes greater; that is, a greater source length is needed for

an equivalent stando↵ distance in harder-to-fit plane waves.

4.3.3 Source Length and Density

Previous examples have been based on the assumption that the maximum number

of sources was used; a reduction of the number of sources in the array would allow

for a lower-power solution to obtain evanescent waves.
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Figure 4.9. Fit coe�cient variation for the pressure (left) and normal
velocity (right) with stando↵ and source length for an incident wave
of 5 kilohertz at an incident angle of 40 degrees modeled using 64
sources.

Figure 4.10 shows the typical variation of fit coe�cient with source number and

length, using an incident wave of 2 kilohertz at 20 degrees and a linear array 30

meters from the surface. The region of good fit is defined by a horizontal border

on the lower end and a high-slope vertical boundary. The horizontal slope suggest

a minimum number of sources needed to approximate the incident wave; for the

current situation, this is 8 sources, far fewer than the 64 in modeling e↵orts with a

fixed number of sources. The vertical line shows a slight slope, indicating a decrease

in source number with additional length required to maintain fit.

For higher frequencies, as shown in Figure 4.11, the minimum number of sources is

increased; this would suggest that the number of sources is a function of the frequency

and incidence angle. There is a small slope at the bottom edge of the good fit region,

thus showing the need for increased source numbers with additional length; this is

indicative of a minimum source density needed to accurately model the incident wave.

Otherwise, the higher frequency plot mirrors the trend seen in the previous figure,



67

Figure 4.10. Fit coe�cient variation for the pressure (left) and nor-
mal velocity (right) with source length and number of sources for an
incident wave of 2 kilohertz at an incident angle of 20 degrees and a
source stando↵ of 30 meters.

where this is very little variance once a minimum source length and number have

been achieved.

4.3.4 Modeling Evanescent Waves

By treating the incident angle as a complex angle and separating its real and

imaginary components into separate variables, the e↵ect of evanescent waves can be

introduced into the model. The use of complex angles will introduce a pressure decay

into the system and a phase di↵erence between the pressure and velocity that are not

seen when modeling conventional plane waves.

The addition of an imaginary component to the angle, which is shown in Figure

4.12 for variation with real and imaginary angle for a 2 kilohertz incident plane wave,

has only a slight e↵ect on the fit of the pressure, reducing the angle of good fit by

9 degrees from a complex angle of 0 to 0.1 radians. The quality of the velocity
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Figure 4.11. Fit coe�cient variation for the pressure (left) and nor-
mal velocity (right) with source length and number of sources for an
incident wave of 8 kilohertz at an incident angle of 20 degrees and a
source stando↵ of 10 meters.

fit, however, decreases significantly with increasing evanescent angle. This is due

to the phase di↵erence that the evanescent angle imposes on the velocity; a greater

imaginary component pushes the phase di↵erence between the pressure and velocity

towards 90 degrees. While a monopole has properties similar to an evanescent wave

in its near-field, these are dependent on geometry, and relying on far-field properties

of a monopole will not produce evanescent components.

4.3.5 Dipole Multi-Source Arrays

The use of dipole sources in the array has little e↵ect on any of the parameters or

the quality of fit shown for monopoles. All the previously presented results show no

appreciable di↵erence when modeled using dipoles in place of monopoles. For exam-

ple, Figure 4.13 shows the improvement in fit coe�cient for a dipole array compared

to the monopole array for the angle and frequency variation shown in Figure 4.5.
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Figure 4.12. Fit coe�cient variation for the pressure (left) and nor-
mal velocity (right) with real and imaginary angle components for an
incident evanescent wave of 2 kilohertz and a source geometry of 4
meters with a stando↵ of 20 meters.

While there are small regions of fit with an increase of 0.25, all these regions occur

where the monopole distributions provide a poor fit, with the highest fit being 0.83.

Figure 4.14 shows the improvement in fit coe�cient when using a dipole array for

the same data shown in Figure 4.10. The use of a dipole array has a negligible e↵ect

on fit coe�cient, with a maximum improvement of 0.01 in small regions, and change

of less than 0.001 in most regions.

That the dipole and monopole arrays have such close fit and similar parameters

is indicative of the local e↵ect of each individual source. A dipole di↵ers from a

monopole by the cosine of the angle to the dipole axis; the acoustical output near

the axis will be similar to the monopole. Because the dipole and monopole outputs

from the array are similar, this suggests that the e↵ects of each source are localized

near the dipole axis (which, in this case, is normal to the plane). There may be

an additional benefit to using dipole sources if the orientation of each source can be
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Figure 4.13. Fit coe�cient improved between the dipole and
monopole arrays for a source array 5 meters from the plane, with
64 sources spanning 10 meters.

Figure 4.14. Fit coe�cient improved between the dipole and
monopole arrays for an incident wave of 2 kilohertz at an incident
angle of 20 degrees and a source stando↵ of 30 meters.
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optimized as part of the model; however, the addition of dipole orientation to the

model will form a nonlinear system of equations.

A dipole is a much less e�cient radiator than a monopole; therefore, for an equiv-

alent source array with dipoles that have the same pressure output as monopoles, the

array will be less e�cient by the same factor, sk cos(⇣), that a dipole is less e�cient

than a monopole.

4.4 Conclusions

Multi-source arrays have been shown to be a viable option for constructing trace

pressure distributions on a plane. The model constructed here shows the influence

of incident wave, source geometry, and evanescent wave parameters on the fit of the

desired waves, for both monopoles and dipoles.

While monopoles and dipoles have characteristics distinct from a plane wave, a

multi-source array can be modeled using a least squares formulation to produce an

approximation of the desired incident pressure and velocity. The quality of the fit of

the approximation is judged by comparing the desired pressure and velocity to their

approximations.

The fit of the multi-source system is heavily dependent on the incident wave

parameters; beyond an angle dependent on the geometry of the source array, the fit

is poor, with further and smaller arrays being able to fit fewer angles of incidence.

Frequency plays a role as well, with a decrease in the quality of the fit with increasing

frequency.

In the geometry of the source array, the stando↵ distance decreases the quality of

the fit, but additional length can be added to the array to improve the quality of the

fit. There is a minimum source density that must be achieved, but beyond this there

is little variation in the quality of the fit.

Evanescent waves adversely a↵ect the fit of the system, possibly due to the phase

di↵erence between the pressure and velocity in the system. While the pressure fit
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varies only slightly with evanescent components, the velocity will fit will be worse

due to phase conditions imposed on the wave that cannot easily be fulfilled.

A dipole array provides similar fit as a monopole array, with all parameters main-

taing similar variation to their monopole counterparts.
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CHAPTER 5. WAVE PROPAGATION IN MULTI-LAYER

MATERIALS

The amplitude and phase of a wave propagating through an infinite homogeneous ma-

terial change only due to the phase change with distance and possibly the damping

in the material. For layered materials each component layer has its own propagation

characteristics, the combination of which causes the resulting multi-layer material to

have a distinct susceptibility to acoustic excitation. By modeling the wave propaga-

tion characteristics of the overall material, we can accurately design waveforms that

excite the components of the material that are of interest.

In this chapter, a model for wave propagation through layered materials is pre-

sented and verified. Applications for the model and analysis techniques in the wavenumber-

frequency domain are presented. A discussion of the e↵ects of evanescent waves on

layered materials concludes the chapter.

5.1 Multi-Layer Wave Propagation Model

The multi-layer propagation model used here is based on a formulation by Brouard

[21], which combines the previous models for transfer matrix calculation of waves in

a solid (by Folds [19]) and a fluid (Pierce [20]) by developing these transfer matrices

into a system of equations. Another major innovation in Brouard’s formulation was

the use of a fluid-solid coupling matrix, which would transfer the material states in

a fluid into those in a solid (and vice-versa). In these models, the material states at

each interface are unknowns and propagation characteristics through each layer are

assumed to relate states on each side of a layer of material. The transfer matrices,

which Pierce and Folds used in series but which Brouard uses as a component for

developing a system of equations, propagate the pressure and velocity through a region
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of material accounting for the phase change over a length L in the material layer. For

example, the relationship between the pressure and normal velocity amplitude vector

[P ] in a fluid from a z0 to z
L

span is (for an e�j!t time convention):
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where k
z

is the wavenumber in the direction normal to material surface. A solid ma-

terial will have an equivalent [P ] vector containing pressure and velocity amplitudes

for both longitudinal (�
z

, v
z

) and shear waves (�
x

, v
x

), and a 4-by-4 transfer matrix

relating pressure and velocity relationships over distance.

Transfer-matrix methods of simulating wave propagation through multi-layer ma-

terials relate the material states between layer 1 and layer N as a series of these

matrices that reflect propagation through each layer:
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The Brouard model expands upon this transfer-matrix approach to develop a sys-

tem of linear equations (a similar formulation will be expanded upon in the following

section):
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The resulting matrix is an N � 1 by N system; the transfer function between the

incident pressure amplitude p1 and the m-th pressure or velocity amplitude in the

matrix formulation is related to the derivative of a subset of the matrix with the first

and m-th row removed:
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H1m = (1 +R1)
|D0

m

|
|D0

1|
. (5.4)

While this type of formulation allows for calculation of multiple states in the sys-

tem, the drawbacks are that it does not distinguish between forward- and backward-

going waves in the system, and that inter-layer material states cannot be discerned.

Both of the latter quantities are important for calculating the intensity transmitted

through layers, which would be a true indicator of energy propagation into the system.

Furthermore, the use of a wave-based method would allow for evanescent wave inputs

in order to model their e↵ectiveness in energy propagation. The model described here

modifies a formulation by Jessop et al. [26], which uses the wave potentials in each

layer to simulate propagation. The resulting system of equations for the multi-layer

system are generated by equating the states at each interface.

5.1.1 Wave Potential Model Formulation

The multi-layer material modeled consists of (N�2) layers of fluid or solid bounded

by semi-infinite fluid layers on each side, with the incident fluid numbered layer 1

and the transmitted bounding fluid layer N . An incident wave in the semi-infinite

first layer is incident at an angle ✓1. The trace wavenumber on the surface k
x

=

k1x = k1 sin(✓1) is constant throughout all layers, while the normal wavenumber

k1z = k1 cos(✓1) will change in each layer, causing refraction in each subsequent ✓
i

. A

schematic of the setup is shown in Figure 5.1.

The system of equations governing wave propagation in the multi-layer material is

formulated by equating the states at each of the (N�1) interfaces in the system. The

forward- and backward-going pressure and shear wave amplitudes are four unknowns

in each layer; for a fluid, the shear wave amplitudes are set to zero. The material

states are calculated as follows.

A wave propagating in the negative z-direction through a fluid or solid at an angle

✓ can be represented by a wave potential of:
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Figure 5.1. Schematic diagram of a sample N = 5 multi-layer mate-
rial. A semi-infinite fluid exists on each side of the three-component
material.

� = Aejkxx�jk

z

z , (5.5)

(The time constant e�j!t is excluded for brevity). Note that this potential is similar

to the pressure equation for a propagating wave; however, the amplitude A of the

wave potential is not equivalent to the pressure amplitude.

A single wave potential equation is used to represent longitudinal (pressure) waves,

and another wave potential  (which is similar to the equation for � but propagates

at an angle � with wavenumber ) is used to represent transverse (shear) waves in

the system:

 = Bejx

x�j

z

z . (5.6)
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Figure 5.2. Wave propagation characteristics and geometry, show-
ing the four waves in a solid system: two forward-going waves, both
longitudinal and shear, and their companion backward-going waves.

At a material interface, a wave incident in one material will generate a reflected

wave in the incident material and transmitted waves in the other material. The

reflected wave travels in the positive z direction and is expressed as:

� = A
R

ejkxx+jk

z

z , (5.7)

with an equivalent expression for shear waves in a solid material. The transmitted

waves travel in the negative z direction and have the expected form with amplitude

A
T

.

A solid material will be defined by a density ⇢ and longitudinal and shear wave

speeds c and b. The wave speeds can be calculated from other material properties;

for example, if given the Lamé constants � and µ, the wave speeds c and b can be

calculated as:

c =

s
�+ 2µ

⇢
, (5.8)
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b =

r
µ

⇢
. (5.9)

The stresses in a solid consist of the normal stress �
z

and tangential stress �
x

, which

can be computed from the wave potentials as:
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A fluid cannot sustain shear; therefore  = 0, µ = 0, and �
x

= 0, and the pressure in

the fluid simplifies to:

p = ��r2� = �i!⇢� . (5.12)

The velocity in fluid or solid materials can be computed from the wave potentials as:

~v = r�+r⇥  , (5.13)

which can be simplified into its constituent parts:

v
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, (5.14)

v
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@z
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In a multi-layer material the model is formulated by using all the boundary conditions

to create a system of linear equations in the wave amplitude coe�cients.

Each constrained layer (layers 2 through N � 1) has forward-going (into the ma-

terial, traveling in the negative z direction) and backward-going (traveling in the

positive z direction) waves that are the product of transmission and reflection at

each interface, labeled as �
i+ and �

i�, respectively (with equivalent  
i+ and  

i� for

shear waves in a fluid). The total longitudinal potential �
i

in a layer represents the
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combined e↵ects of both forward- and backward-going waves; the material states in

Equations 5.10-5.15 are calculated using the sum of both waves. The wave amplitudes

are represented in a vector P
i

for each layer.

At the interface between the i-th and (i+1)-th layers, located at a depth of z
i

, the

relationships between the material states form a system of equations that constitute

several rows of the system of equations for the material. For solid-solid or fluid-

fluid layer interfaces, the pressure and velocity in each direction is equal across each

interface, and the pressure and velocity amplitude [P ]
i

at the right side of the i-th

layer is equal to the pressure and velocity at the left side of the (i+ 1)-th layer.

For example, the states across a fluid-fluid interface can be equated by applying

equations 5.10 and 5.14 to yield two equations:
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Substituting the wave potential equations into 5.16 for the forward- and backward-

going waves gives:
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and equation 5.17 will simplify to:
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The resulting system of equations for the interface are:
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For a solid-solid interface, the four equations for continuous longitudinal and shear

stress and velocity form four equations:
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which can be easily manipulated into a system of linear equations similar to 5.20.
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At a fluid-solid interface, the normal stresses (equivalent to pressure in the fluid)

and normal velocities are equal. The fluid layer cannot sustain shear stress, so the

shear stress in the solid at the interface is zero. There is no equation relating the

shear velocity at the interface. The resulting material states at an i-th layer of fluid

and an (i+ 1)-th layer of solid are:

� p
i

= �
z,i+1 , 0 = �

x,i+1 , vi = v
z,i+1 . (5.22)

and the resulting equations will be:
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(5.23c)

The interface between the first two layers involves the incoming wave with unit

amplitude; the resulting equations di↵er from other interface equations in that they

form an inhomogeneous system of equations due to the forcing of the incident wave.

Only the reflected wave is an unknown coe�cient in the first layer; the amplitude of

the incident wave is a constant. For example, at a fluid-fluid interface between the

incident layer and the second layer at z = 0, the resulting state equations will be:

� j!⇢1A1� � (�j!⇢
i

(A2+ + A2�)) = �(�j!⇢1) , (5.24)

jk
z,1A1� � (�jk

z,2A2+ + jk
z,2A2�) = �(�jk

z,1) . (5.25)
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On the final layer N (which must be a fluid in order to create a consistent system

of linear equations), only the outgoing wave is allowed for. Because the fluid is semi-

infinite, there will be no backward-traveling component.

The systems of equations for each interface can be summarized as the relationships

between coe�cients for each layer [S
i

], a vector of wave amplitudes [P
i

], and the

resulting constants [C
i

] (which will be zero for all interfaces except the first one):
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, (5.26)

and these constituent parts for each layer can be combined into a multi-layer system

of the form:
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(5.27)

(5.28)

or, in simplified form:

h
S
i h

P
i
=

h
C
i
, (5.29)

and the resulting coe�cients [P ] can be solved as:

h
P
i
=

h
S
i�1 h

C
i
. (5.30)

Once the coe�cients in the system have been found, the amplitudes of each wave

can be input into their respective equations, and the steady-state material states can
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be found at all points z by summing the results from the forward- and backward-

going waves in the appropriate layer. These material states are transfer functions

between the state and the unit input wave amplitude; to obtain a transfer function

for incoming pressure, the material states should be divided by �j!⇢1.

Intensity in the system can be found from the stress and velocity (we will use the

generic � and v to correspond to either the longitudinal or shear values) at any state:

I(z) =
1

2
<(�(z)v⇤(z)) , (5.31)

where v⇤(z) is the complex conjugate of the velocity v(z). In a fluid, the inten-

sity in the i-th layer (the i subscript will be excluded from material properties and

wavenumbers for clarity; note that z is a position) is:
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(5.32)

The center two terms, which contain phase components, create a purely imaginary

term that will not contribute to the intensity; therefore, intensity is constant across

a fluid layer.

In a solid layer, the intensities in the longitudinal and shear waves both consists

of 16 terms, obtained from multiplying the 4 terms constituting stress by the four

terms constituting velocity. The longitudinal intensity is:
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)Ã�B̃+
⇤
ej(kz+

z

)z

+k⇤
z

(�(�k2
x

� k2
z

)� 2µk2
z

)Ã�Ã�
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⇤
ej(z

�k

z

)z

�⇤
x

2µ
x


z

B̃�B̃�
⇤
) ,

(5.33)



85

while the shear intensity is:
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In a solid, The individual intensity terms are not constant across the layer; the

cross-terms of the multiplication yield two position-dependent terms. However, the

overall intensity I = I
z

+ I
x

in either direction will be constant in the layer.

Due to conservation of energy, the total intensity in each material layer is constant

across the system, and equal to the outgoing intensity in the final layer I
N

:

I1 = I2 = I
n

= I
N

. (5.35)

While the intensity is constant with position across each layer, it will vary as a

function of frequency and incident angle.

5.1.2 Model Verification

Initial verification of the model was performed by matching the results to closed-

form fluid-fluid and fluid-solid interface solutions (which were presented in Chapter

3), which matched for all test cases, as seen in Figure 5.3.

Another test of the viability of this multi-layer model will be to compare the model

results to other models for transmission through a simple plate. The transmission

loss for a plate calculated using Bernoulli-Euler or Timoshenko beam theory relies

on flexural wave motion in the beam; this motion is simulated in the wave potential

model by coupling longitudinal and shear stresses. The transmission loss across the

panel is:

T = 10 log

����1 +
Z cos(✓)

2⇢c
pl

����
2

, (5.36)

where the impedance Z
pl

is calculated from the plate flexural wave velocity c
pl

:

Z
pl

= j!m
pl

✓
1�

✓
c
pl

v
tr

◆4◆
. (5.37)

For Bernoulli-Euler beam theory, the flexural wave velocity can be calculated using

the mass per unit area m
pl

and bending sti↵ness B
pl

:
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Figure 5.3. Comparison of the longitudinal (left) and shear (right)
transmission coe�cients for the fluid-solid interface obtained using
the model in Chapter 3 (top row) compared to that using the multi-
layer model (bottom row). That the plots along each column match
is indicative of similar results between both models.

c
pl,BE

=
p
! 4

s
B

pl

m
pl

. (5.38)

Calculation of the Timoshenko beam theory transmission loss uses a di↵erent value of

c
pl

, which can be found (as detailed can be found in Gra↵’s book [47]) by solving for
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the positive root of the frequency equation of the governing equations for Timoshenko

beam motion:

EI

m
pl
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1

c
pl,T

◆2

� I

t
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◆
!2

✓
1

c
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� !2 +

⇢I

Gt
!4 = 0 , (5.39)

where E, G, and ⇢ are material properties of the plate, I = t3/12 is the bending

sti↵ness of the plate, and t is the thickness of the plate.

The plate modeled is a 3 centimeter thick steel plate, with an acoustic wave

incident at a 30 degree angle. A plot showing the transmission loss variation with

frequency for the wave potential model, the Bernoulli-Euler, and Timoshenko beam

theories is shown in Figure 5.4. Di↵erences in the transmission loss are due to the

assumptions in each beam theory that limit the type of wave propagation in the beam.

The wave potential model matches the prior theories well across most frequencies. The

model estimates the transmission loss minima near 2,000 Hertz at a frequency above

the Bernoulli-Euler beam theory model and below the Timoshenko theory model.

Above the TL minima, the models agree to within several dB, with the wave potential

model more closely matching the Timoshenko beam theory that would allow for less-

constrained motion in the beam. Comparison to previously-verified TL calculations

shows that the wave potential model is accurate for modeling acoustical propagation

through materials. In addition to a single layer of the model, Figure 5.4 shows two

additional lines, comprising the same panel modeled using two and three sublayers.

These lines lie atop the single-layer model, showing the robustness of the model.

5.2 Wavenumber-Frequency Decomposition of Vibration

Wavenumber-frequency displays of vibration can be useful for visualizing wavetypes

that can propagate through a material. By representing the vibration spectrum in

the wavenumber domain as well as the frequency domain, properties of waves in the

materal can be determined in a way that is not intuitive in the spatio-frequency

domain.
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Figure 5.4. Transmission loss comparison of Wave Potential,
Bernoulli-Euler and Timoshenko theories, and a split Wave Poten-
tial model for 2 and 3 sublayers comprising the panel, for a 2cm panel
with 30 degree acoustic incidence.

Spatio-frequency vibration data V (x, f) along a straight line of length L, where

x is the position along the line from 0 to L and f is the frequency, can be trans-

formed into wavenumber-frequency data V (k, f) by applying a Fourier transform to

the spatial dimension. For the case of discrete data along equally-spaced acquisition

points, x
i

, limitations on the Fourier transform (as implemented using the Discrete

Fourier Transform) are similar to those imposed in the case of time-sampled data

being converted to frequency. The wavenumber resolution, �k, of a set of discretely

sampled points along a length L will be:

�k = 2⇡

✓
1

L

◆
, (5.40)

and the maximum wavenumber k
max

is proportional to the spatial sampling rate �x:

k
max

= 2⇡
1

�x
. (5.41)
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The resulting wavenumber-frequency data allows analysis of vibration in a do-

main in which wavetypes are more clearly visible. High-amplitude features that lie

along lines (either straight lines or curved) in the wavenumber-frequency domain are

indicative of wavetypes that are propagating in the material. The phase speed of a

feature located at (k,!) is c = !/k = 2⇡f/k, and the group speed is c
g

= �!/�k. For

non-dispersive waves which have a speed invariant with frequency, including compres-

sional and shear waves in a material, the phase speed will be constant and equal to

the group speed, and the line will be straight in the wavenumber-frequency domain.

For dispersive waves, such as flexural waves in a structure, the phase and group speed

will vary with frequency and the resulting line representing the wave will have a vari-

able slope. A wavetype feature originating from a f 6= 0 frequency indicates that the

wave has a cut-on frequency; typically, these waves have geometry constraint along

a non-propagation direction that must be fulfilled before the wave can propagate.

Single points of high amplitude are indicative of standing waves and mode shapes

in the system (although mode shapes made from reflecting wavetypes will show up

as higher-amplitude sections of an existing wavetype feature). A schematic diagram

showing these relationships on a simplified wavenumber-frequency plot is shown in

Figure 5.5.

The wavenumber-frequency decomposition technique can be applied to both ex-

perimental measurements and theoretical models. We will use this technique in dis-

playing the results of our model to more easily distinguish the characteristics in the

system.

5.3 Modeling of Wave Propagation

Modeling several representative multi-layer systems can simulate the e↵ects of

coupling di↵erent materials together. Here, we build upon the fluid-fluid and fluid-

solid interaction by adding additional complexities, including a single thick solid layer,

the e↵ects of higher-impedance bounding, and the e↵ects of fluid gaps between the
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Figure 5.5. Wavenumber-frequency schematic showing phase speed,
group speed, cut-on frequency relationshpis, and standing waves.

bounding and target layer. The model used here allows for visualization of energy

within each layer, which is useful for judging the e↵ectiveness of di↵erence incident

wave frequencies and incident angles.

Results from the model are a function of the frequency f and the incident angle

of wave propagation, ✓. The trace wavenumber on the surface k
x

, which is constant

throughout each layer of the material, can be related to the angle of incidence by:

k
x

= k sin(✓) , (5.42)

thus allowing for a method to input a surface wavenumber into the model using the

angle ✓. The use of the surface wavenumber as a reference is advantageous because

vibration scans of the surface will more closely correlate in that case. The nature of

surface wavenumbers is such that they will vary from 0 at normal incidence to the

incident region material wavenumber k0 at 90 degrees. Figure 5.6 shows equal-angle

lines on a frequency-angle plot and on a wavenumber-frequency plot. Each angle
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corresponds to a trace wave speed of c/ sin(✓); the decrease of trace wave speed with

increasing angle can clearly be seen in the wavenumber-frequency plot.

Figure 5.6. Representation of incident angles of propagation in
wavenumber-frequency plots. Lines of equal angle are shown in both
the frequency-angle plot (left) and frequency-wavenumber plot (right).

Because the surface wavenumber is a function of frequency, the variables in the

wavenumber frequency plot are not independent. This leads to compression of some

regions in the plot, particularly at lower wavenumbers, where the entire angle is

compressed into a much smaller section than the equivalent angle range at higher

frequencies.

Several materials will be simulated in the model which are close analogues to the

materials of interest in our testing and research. These properties were arrived at

through a combination of existing data and wave propagation testing on the material

(as detailed in Section 6), and are adjusted to yield properties that can be clearly

distinguished in analysis when coupled to other materials.

Our primary concern is a low-wave speed material that approximates an energetic

material. The material is question is a composite polymer of ammonium chloride in a

hydroxyl-terminated polybutadiene (HTPB) resin binder, with the ammonium chlo-
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ride consisting of 75% of the polymer by weight. Further details of the material will

be given in Chapter 6; for our purposes now, we approximate the material properties

as longitudinal and shear wave speeds of 700 and 500 meters per second, respectively,

and a density of 1,200 kilograms per cubic meter. Because our primary goal is to

excite this energetic material, results of the system will be shown in terms of energy

deliverance (the sum of both longitudinal and shear intensity) into the target layer

of surrogate material.

Polycarbonate is used as a bounding material, with a longitudinal wave speed of

1,300 meters per second, a shear wave speed of 900 meters per second, and a density

of 1,000 kilograms per cubic meter. The fluid in the model is air, with a wave speed of

343 meters per second and a density of 1.2 kilograms per cubic meter. The properties

used in all models are shown in Table 5.1.

Table 5.1. Table of material properties used in multi-layer wave
propagation model.

Material

Density
Compressional Shear

wave speed wave speed

⇢ c b

kg/m3 m/s m/s

Air 1.2 343 N/A

Surrogate 1,200 700 500

Polycarbonate 1,000 1,300 900

To limit the e↵ect of resonances in the layers, a 1% damping coe�cient was added

to the speed of sound of all enclosed layers.

The initial model we will consider is a fluid layer of 10 centimeters bounded by air

on both sides, with the density and (longitudinal) wave speed of the fluid equal that

of the energetic material. As in Chapter 3, this will serve as a simplified model of

wave propagation to allow for ease of analysis. This same geometry with a solid layer

of energetic material will also be considered. In the next model, a thin, 2 millimeter
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layer of polycarbonate will border the energetic material to provide a high-impedance

material barrier to wave transmission. Lastly, the e↵ects of having a fluid gap in the

system between the barrier and the energetic material will be explored by inserting a

1 centimeter gap of air into the system. A schematic of all the multi-layer geometries

are shown in Figure 5.7.

Unless noted, the intensity transmission loss is plotted in the figures below:

TL = 10 log

✓
I
i

(z)

I0

◆
, (5.43)

where z is typically the center of the i-th layer of interest (which is noted in each

individual analysis).

The wavenumber-frequency characteristics of the intensity transmission loss at

the center of the single fluid layer is shown in Figure 5.8. The region that comprises

subsonic transmission in air (below 343 meters per second of wave speed) has been

excluded because the resulting incident wave generated in this region would not prop-

agate, and the reference intensity is too low to provide a physically relevant measure

of transmision loss in the system.

Between the wave speed of the incident air and the lowest wave speed in the mate-

rial of interest (in this case, the fluid wave speed of 700 meters per second), all waves

into the material are subsonic; the region of high transmission loss here is indicative

of very little energy propagating into the material. Although the temperature plot

of the transmission loss is cut o↵ at 100 dB to show detail in the supersonic region,

the actual transmission loss in this region is around 200 dB, and will be of no use in

energy transmission into the material.

At k = 0, which corresponds to normal incidence of sound, there are modes at in-

teger multiples of 3,500 Hertz, corresponding to the half-wavelength distance of sound

in the energetic material f = nc
i

/L
i

. With increasing wavenumber, the frequency

of these features increase in frequency to account for the longer distance imposed on

the half-wavelength. They eventually become waves moving almost entirely down the
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Figure 5.7. Geometries of modeled multi-layer systems. The top
system consists of 10 centimeters of a surrogate layer (and will also
be used for the single fluid case). The second system is the same
surrogate layer enclosed by thin polycarbonate walls, to simulate a
container. The lowest geometry is the same surrogate and walls, only
with a 1 centimeter air gap between the surrogate and the polycar-
bonate wall.

waveguide of the center fluid layer, and the group speed of waves from this motion

will approach the speed of longitudinal wave propagation in the material.
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Figure 5.8. Intensity in middle layer of the fluid layer system, with
the wave speed of the fluid (700 meters per second) and the wave
speed in air (343 meters per second) indicated.

In the results for a solid layer of material, shown in Figure 5.9, the addition of

shear waves to the system adds several features. The high-transmission loss region

seen in the fluid layer modeled is not seen in this model; while there ought to be a

high-transmission loss region below the shear speed in the material, that region is

dominated by a flexural mode which decreases transmission loss. The e↵ect of the

shear wave on energy transmitted into the material is visible because of the features at

integer multiples of 2,500 Hertz, which is the half wavelength frequency of materials

traveling at 500 meters per second in a 10 centimeter gap.

Above normal incidence, the complex behavior introduced into the system by the

addition is due to wave coupling phenomenon, wherein the shear waves that were not

present in the fluid layer couple with the existing longitudinal waves to create Lamb
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Figure 5.9. Intensity in the middle layer of the solid layer system,
with relevent features and wave speeds labeled.

waves propagating within the solid layer. This causes behavior such as negative group

speed seen in the curve beginning at 3,500 Hz (Feature 1). Auld [22] goes into this

phenomenom more fully.

The addition of the polycarbonate bounding layer serves to lower the cut-on fre-

quency and the frequencies for the equivalent wavetypes in the material, as shown in

Figure 5.10. This is more evident at low frequencies, where the mode previously found

at 3.5 kilohertz is now at 2.8 KHz. While the polycarbonate is a higher-impedance

material, the layer is too thin to contribute additional sti↵ness, while increasing the

length of the overall system in which waves can propagate.

The addition of an air gap between the two materials greatly increases transmission

loss across all angles and wavenumbers, as seen in Figure 5.11. This shows the e↵ects

of decoupling the polycarbonate layers from the energetic; when the polycarbonate
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Figure 5.10. Intensity in the center of the middle (surrogate) layer
of the plastic-bounded surrogate system.

was coupled to the solid layer as shown in Figure 5.10, the resulting system had

little e↵ect on the transmission loss. However, decoupling the layers greatly increases

the transmission loss, as the polycarbonate layer induces a significant loss before

transmission into the energetic layer.

5.3.1 The E↵ect of Evanescent Incident Waves

Evanescent waves were shown to be e↵ective for overcoming subsonic transmission

constraints in Chapter 3; their e↵ect in multi-layer systems will allow for additional

avenues of energy transmission.

In the model developed here, evanescent waves are represented by an adding an

imaginary component to the trace surface wavenumber. Such a wavenumber will
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Figure 5.11. Intensity in the middle layer of middle (surrogate) layer
of the plastic-bounded system with an air gap between the plastic and
surrogate.

relate to a complex incident angle of propagation using our previous formulation in

Equation 5.42.

The evanescent waves will not necessarily increase transmission into the system;

rather, they will allow for additional transmission in subsonic (below the material

wave speed) regions of the materials. For example, the intensity transmission loss

due to a 0.1 complex component added to the single solid layer shown in Figure 5.9

is shown on the left side of Figure 5.12. The scale of this plot has been left at the

same scale of the previous plot; the right plot shows the reduction in transmission

loss between the transmission loss of the evanescent wave, TL
e

compared to the

transmission loss of the classical plane wave, TL
p

, TL
p

� TL
e

. In such a case, a
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positive value of TL reduction indicates an increase in energy transmission due to

evanescent wave e↵ects.

The use of evanescent waves causes increased energy transmission into the ma-

terial, particularly at lower wave speeds, up to 20 dB. The evanescent wave also

broadens the region of low transmission loss (Feature 2), increasing the width of the

flexural mode components to lower the transmission loss in that region. There is an

additional narrow high-transmission loss region that is below a surface wavenumber

of 100 radians per meter (Feature 1); the cause of this is unknown.

Figure 5.12. Intensity transmission loss in the center layer (left) and
transmission loss improvement due to the evanescent wave (right)
for the single-layer surrogate layer system with 0.1 radian evanescent
component.

Evanescent waves ought to provide a method for propagating energy across a

higher wave speed barrier region, particularly when the energetic behind the barrier

has a lower wave speed. For example, a thick polycarbonate layer bonded to the

surrogate material will provide significant energy loss in large regions of transmission.

Such a system, with a 5 centimeter layer of polycarbonate in front of 10 centimeter

layer of surrogate material, will show the contribution of evanescent waves. The in-
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tensity transmission loss into the center of the polycarbonate and surrogate layers

for non-evanescent wave transmission is shown in Figure 5.13. Intensity transmission

in the system is dominated by the polycarbonate layer, causing subsonic transmis-

sion into the material below 700 meters per second. The addition of an evanescent

component, shown in Figure 5.14, shows regions of improved and decreased intensity

transmission loss. Figure 5.15 shows the TL reduction in the center layer due to the

evanescent component. At higher wave speeds, there is a decrease in intensity trans-

mission loss (Feature 1); this may be due to the increased decay of wave propagation

limiting total intensity to the layer. At lower wave speeds (Feature 2), there is a

slight increase in energy transmission (about 10 dB); this could be a region where

the additional decay in the system is still greater than the e↵ects of classical wave

propagation, allowing a contribution from the evanescent wave.

Figure 5.13. Intensity transmission loss for the polycarbonate-
shielded surrogate system, consisting of polycarbonate in front of 10
centimeters of surrogate. Intensity transmission loss is shown in the
polycarbonate layer (left) and the surrogate layer (right).
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Figure 5.14. Intensity transmission loss with evanescent component
for the polycarbonate-shielded surrogate system, consisting of poly-
carbonate in front of 10 centimeters of surrogate. Intensity transmis-
sion loss is shown in the polycarbonate layer (left) and the surrogate
layer (right).

Figure 5.15. Intensity transmission reduction in the surrogate layer
for the polycarbonate-shielded surrogate system.
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5.4 Conclusions

Wave propagation in multi-layer materials is governed by the coupled nature of

the component layers. While previous models have developed transfer matrix and

system of equation formulations for wave propagation through a multi-layer system,

using wave potentials to calculate wave propagation has several advantages, such as

allowing for evanescent incident waves and calculation of intensity in the system.

The wave potential model is generated for modeling wave propagation through

each component layer of material, and equating the material states at each interface

to solve for the appopriate wave properties. By replacing the transfer matrix-adapted

method of wave propagation with a wave pontential method, the material states can

be seen and intensity in each layer can be calculated. The model was verified by

matching the results to existing closed-form solutions of panel vibration.

Several multi-layer materials were modeled, beginning with a single fluid or solid

layer. A single layer exhibits both modes that are integer wavelengths of the layer’s

thickness, as well as coupled modes that are flexural or dilatational motion in the

solid. When bounded by a higher-impedance material with low flexural sti↵ness, the

materials couple together and produce a lower flexural sti↵ness multi-layer material.

The removal of the coupling between the layers by adding a small fluid layer between

each solid produces a much higher energy loss across the sample.

The model allows for evanescent incident waves; these e↵ects are seen in the

subsonic region of energy transmission, but have little or no e↵ect in the classic

regions. An evanescent waves can be used to propagate energy into the subsonic

domain of a material, which can be useful to overcome a high-impedance barrier before

a low-impedance target material. In cases where a particular frequency is desired

that may impose limitations on classical wave propagation, the use of evanescent

angles can add another parameter to overcome those limitations. However, the model

constructed shows many regions of classical wave propagation that are as e↵ective or

better to excite material layers.
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Because the evanescent waves o↵er improvement in sound transmission in the sub-

sonic region, they pale in comparison to intensity transmission in supersonic regions.
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CHAPTER 6. EXPERIMENTAL MEASUREMENTS OF WAVE

PROPAGATION

The ability to quantify wave propagation characteristics in materials and structures

experimentally depends significantly on conditions inherent to the testing setup. The

resulting wave speeds found in testing can be used as inputs into the multi-layer model

described in Chapter 5, as well as verification for that same model (particularly for

geometry-based considerations such as flexural waves). Direct measurement of wave

propagation is particularly important for inhomogeneous materials such as foams or

aggregate composites, which may have wave properties that di↵er significantly from

what the material properties would suggest. Furthermore, measurement of propaga-

tion characteristics will provide a better estimate of properties such as the speed of

wave propagation, as well a geometry-specific properties such as cut-on frequencies

or flexural wave speeds.

Vibration visualized in the wavenumber-frequency domain has distinct features

that correspond to properties such as wave speeds, modes, and cut-on frequencies in a

component. However, vibration measured during testing will be subject to conditions

of the test, in particular excitation position and mounting conditions. Poor mounting

conditions will mask the resulting waves in the system; while free-free simulated

mounting commonly used in vibration classification of materials provide an ideal

condition, they are insu�cient in cases where the material needs support, and the

mounting must be considered.

Another factor to be considered in experimental measurements is the e↵ect of ex-

citation locations, which may reveal di↵erent wavetypes in the system. For example,

excitation at the end of a beam may excite longitudinal waves down the bar at the

expense of transverse excitation. Care should be taken in designing an experiment to
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assess the type of input and the e↵ects it may have on the material. While the excita-

tion type may be useful for illustrating di↵erent wavetypes, determining their relative

susceptibility to excitation should only be performed with careful consideration of the

system.

In this chapter, the e↵ects of mounting conditions and excitation location are

considered in the wave propagation classification of an unknown material.

6.1 Test Methodology

The motivation of this research is determining the wave propagation characteris-

tics of a surrogate explosive material. Other methods of classification are being pur-

sued simultaneously by Paripovic and Davies [48]; however, direct measurement of

wave properties will be useful for modeling purposes. The material of interest is com-

posite polymer composed of an ammonium chloride crystal in a hydroxyl-terminated

polybutadiene (HTPB) resin binder, mixed together into a homogeneous mixture and

poured into molds where they hardened to create a solid material. The surrogate is

classified by the percentage of the crystal volume fraction, with 50% and 75% samples

being used in our testing. The material was designed this way to simulate the dy-

namic properties of a commonly-used propellant while avoiding rapid energy release

should the material be over-excited. In the propellant, the ammmonium chloride

crystals would be replaced by ammonium perchloride.

The HTPB samples are cast into a mold 1.27 centimeters (0.5 inch) thick by 2.54

centimeters (1 inch) wide and 121.9 centimeters (48 inches) long. The properties of

the HTPB surrogate vary significantly between the 50% and 75% samples. While the

50% samples are flexible and deform under their own weight, the 75% samples are

more rigid but display significant granularity that is susceptible to breaking under

deformation. Neither sample is rigid enough to stay intact if subject to its own weight,

and cannot be machined or tapped for attachment of measuring devices. Figure 6.1

is a photo showing the textural di↵erences between the two samples.
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Figure 6.1. Surrogate samples tested. The 50% sample is on top,
consisting of lower sti↵ness and a more elastic structure. The 75%
sample is significantly more rigid, and would fracture under substan-
tial deformation.

Because the surrogate samples are fragile and cannot support their own weight,

mounting conditions are limited, especially those which provide a minimal support.

In order to minimize the e↵ects of the support, the samples were placed on Thinsulate

layer that rested on a Quash foam board. A polycarbonate backing was also provided

for comparison.

In addition to the HTPB surrogate material, polycarbonate was used as well to

provide both a low-damping, thoroughly-quantified material. The polycarbonate is

extruded as a thickness of 1.27 centimeters (0.5 inch) and cut to a width of 2.54

centimeters (1 inch) and a length of 121.9 centimeters (48 inches). The clear sides of

polycarbonate were sanded to provide an opaque surface that could be measured by

the laser vibrometer.
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The density of polycarbonate is 1,200 kilograms per cubic meter (kg/m3). The

50% surrogate material has a density of 1,156 kg/m3, and the 75% has a density

of 1,085 kg/m3. While the ammonium chloride material has a higher density than

the resin binder, manufacturing of the 75% samples produces air gaps that serve to

reduce the density of the material. All of the foams have significantly lower densities

than the test materials; the polyamide foam used in the minimal foam backing tests

of polycarbonate had a density of 6.4 kg/m3, while the Quash had a density of 32

kg/m3. The volumetric density of the Thinsulate could not be found; however, the

sheet material weighs 150 kg/m2 for a sheet approximately 6 millimeters thick when

uncompressed, which would yield a density of 9 kg/m3. The density of the tested

materials is at least 30 times greater than the backing material, and typically more.

The polycarbonate samples were tested in three mounting conditions. The first

was a hung condition, wherein the polycarbonate rod was suspended from a hook by

a string drilled into the far edge of the sample. This represents a minimal boundary

condition, and is commonly used in modal testing of structures. The polycarbonte

was then supported using the minimal foam support, as well as a more thorough foam

backing consisting of the Thinsulate, the same method used for the surrogate sample.

The excitation locations used in testing were a side excitation, wherein the actu-

ator was mounted within an inch from the end of the largest side (on the width-by-

length plane). The other excitation location was on the end (on the width-by-height

plane). The actuator-transducer stack was attached to the polycarbonate through a

screw stud that was tapped into the polycarbonate. To attach the stack to the HTPB

surrogate samples, an accelerometer mount was glued to the sample surface by using

epoxy; these mounts have a screw stud that allows the stack to be attached.

The samples were excited using a PCB 712A02 stack actuator equipped with a

100 gram add-on mass. The actuator has an excitation range of 150 to 5000 Hertz,

and was driven with a white-noise signal generated by a General Radio 1381 Random-

Noise Generator, running at a brandwidth of 5 KHz. The signal was amplifed with a

QSC 1100 audio amplifier.
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Figure 6.2. Schematic of experimental measurements of polycar-
bonate beam. Two excitation locations were used, with the ”side”
excitation being along the same plane as the measurement, and the
”end” excitation being at the far end of the polycarbonate bar. For
mounting, the beam was hung (suspended from the end above a fixed
point), given a foam backing that covered the entirety of the surface
opposite the measurement, and positioned with minimal support that
allowed for reduced contact with the sample.

Force into the sample was measured using a PCB 208A02 force transducer, which

is an ICP-powered transducer with a nominal output of 50 millivolts per Newton.

This transducer was positioned between the actuator and the sample.

Vibration measurement along the sample was performed using a Polytec PSV-400

scanning laser vibrometer. The vibrometer measured a 4 KHz bandwidth with 1,600

points across that frequency range for a frequency resolution of 2.5 Hz. The number

of points tested varied during particular tests; as least 200 points where measured
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across every sample. Testing spanned over most of the bar, with a scan length of

approximately 1.15 meters in length.

All data analysis was performed using the data acquisition system of the Polytec

PSV-400; both the vibration signal and the force transducer signal were windowed

using a Hann window and recorded for 50 averages with 50 percent overlap. The H1

estimator was calculated between the vibration and force transducer signal, and is

the displayed signal on all results. A list of all the equipment used in testing is shown

in Table 6.1.

Wave propagation measurement consists of exciting vibration in the sample using

the actuator, then measuring the resulting vibration at number of points along the

length of the sample. Conversion of the frequency-position data into wavenumber-

frequency data enables visualization of wavetypes in the system. Wavenumber anal-

ysis was performed using the method specified in Section 5.2. A table showing exper-

imental parameters and the resulting frequency and wavenumber resolution is shown

in Table 6.2.

Use of the Discrete Fourier Transform results in a two-sided wavenumber-frequency

plot, with information in both the negative and positive wavenumber values. This

information is indicative of waves traveling in di↵erent directions in the system; the

direction is relative to the numbering of points in the system, and in all cases points

are numbered with low numbers being closer to the excitation location, and waves

traveling away from the sensor have negative wavenumbers. Because waves traveling

towards the excitation source can only be formed by reflection in the material, the

di↵erence between the features on the positive and negative sides of the wavenumber

spectrum is due to reflection characteristics in the system.
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Table 6.1. Equipment used in wave propagation testing.

Equipment Type Manufacturer Model Number Serial Number

Stack Actuator PCB 712A02 666

White Noise Source General Radio 1381 41259

Amplifier QSC 1100 109298995

Force Transducer PCB 208A02 9273

Scanning Vibrometer Polytec PSV-400 0111421

Data Acquisition Polytec PSV-400 0111891-01

Table 6.2. Parameters for sample testing.

Parameter Quantity Units

Measurement Distance 1.15 meters

Spatial Resolution 5.6 millimeters

Wavenumber Resolution 5.3 rad/m

Sampling Frequency 4,000 Hz

Frequency Resolution 2.5 Hz

Number of Averages 50 N/A

Overlap 50 percent

6.2 Results

6.2.1 Polycarbonate Tests

The results of the tests on the polycarbonate samples are shown in Figure 6.3.

In the foam mounting condition, the vibration spectrum of the side excitation is

dominated by a dispersive wave with a phase speed between 114 meters per second
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at 500 Hz and 332 meters per second at 3,500 Hz. This is most likely a flexural wave

with deformation normal to the direction of measurement and excitation.

The end excitation shows the flexural wave, but has an equally prominent non-

dispersive wave of about 1,700 meters per second. This would most likely be the

longitudinal wave speed in the beam; from the material properties, polycarbonate is

estimated to have a bulk longitudinal wave speed of 1,696 meters per second. While

the flexural wave is seen in the end excitation, another slightly faster dispersive wave

can also be observed. This is the transverse flexural wave causing motion in the

normal direction. The wave speed of a flexural wave is proportional to the fourth-

root of the bending moment; the approximate ratio between the two speeds, across all

frequencies, is 1.7, which is nearly equal to the ratio of normal to transverse bending

moment, 81/4 = 1.68.

Both the foam backed and minimal foam support mounting conditions show the

same trend with regards to excitation as the hung mounting, wherein the side excita-

tion exhibits a strong flexural wave and the end excitation shows multiple wavetypes.

In contrast to the hung mounting condition, though, both foam mounting conditions

exhibit the transverse flexural wave more prominently. This would indicate that the

normal flexural wave is limited by the mounting conditions, while the transverse flex-

ural motion is not subject to the same constraint. The additional prominence of

the transverse wave in the minimal foam support condition is due to the decreased

restriction in motion of the minimal foam support compared to the foam backing.

The structure of the non-dispersive wave shown in the minimal foam supports with

end excitation suggests that there are two waves with this high wave speed; however,

it is unknown what this wavetype could be, and could be additional energy of the

longitudinal wavetype.

The tests above show the results of changing the excitation location and mounting

type on a polycarbonate beam. The hung mounting provides the best excitation of the

wavetypes typically normal to the direction of measurements, but the foam mountings

reveal additional wavetypes such as the transverse flexural wave. Similarly, the end
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Figure 6.3. Polycarbonate vibration for the hung (top row), foam
backing (middle row) and minimal foam support (bottom row) con-
ditions, with side (left plots) and end (right plots) shown. Significant
features have been labeled on the plot.
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excitation shows several low level wavetypes, while a side excitation is dominated by

a single wave.

6.2.2 Surrogate Tests

The surrogate sample di↵ers from the polycarbonate in that the material proper-

ties were not known, making estimation and suggestion of what the visualize wavetypes

might be attributed to in the material di�cult. Therefore, the polycarbonate results

will provide a template for which to interpret the features found in the surrogate

tests.

Figure 6.4 shows the vibration spectra for the 50% surrogate sample tests. The

sample exhibits a one-sided wave spectrum; this is indicative of a lack of reflection

in the material due to damping. The e↵ects of the damping can also be seen in the

frequency response; there is substantially less energy above 2,500 Hertz. The lack

of energy at higher frequencies can be seen in Figure 6.5, which shows the position-

dependent frequency response. The higher-frequency components decay quickly, and

therefore contribute less energy in the wavenumber domain.

The 50% surrogate test results show three waves of interest. Two dispersive waves

in the same normal-transverse pair seen in the polycarbonate have maximum speeds

(before damping becomes significant) of 95 and 113 meters per second, are visible in

the end excitation, while only the slower wave can be seen in the side excitation. The

non-dispersive wave has a wave speed of 244 meters per second, which is significantly

slower than the sound speed in air. Therefore, the 50% surrogate material would have

no subsonic range of acoustical transmission.

When the surrogate sample is backed with the higher-impedance material, such

as in the results for the test on the polycarbonate-backed surrogate, the resulting

vibration information is indiscernable; coupling with the polycarbonate obscures all

pertinent wave information. This would suggest that the foam mounting is su�ciently
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Figure 6.4. 50 % surrogate vibration for foam backing (top) and
polycarbonate backing (bottom) conditions, with side (left plots) and
end (right plots) shown. Significant features have been labeled on the
plot.

low impedence to allow for wave propagation in the materials, but the polycarbonate

material is too sti↵ and restrains motion.

For the results of the 75% surrogate sample tests, shown in Figure 6.6, the foam

mounting conditions have much less prevalent damping than that which produced a

one-sided wavenumber-frequency profile for the 50% surrogate sample. While the

forward-going (left) side of the plot is slightly higher in amplitude, there is still

significant energy traveling in the opposite direction through the bar. Two waves
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Figure 6.5. Vibration in the position-frequency domain for the 50%
surrogate sample, comparing the foam mounting condition for side
(left) and end (right) excitation.

are evident in testing: a dispersive wave with a speed of about 400 meters per second

above 1000 Hertz, and a non-dispersive wave with a speed of about 900 meters per

second. While the transverse flexural wave could possibly be seen as the higher

component of the main dispersive wave, it is not discernable enough from the primary

flexural wave to ascertain its properties.

The polycarbonate-backed tests of the 75% sample have more wave components

than the foam mounting condition and the primary wavetypes are harder to discern;

however, wave components can more clearly be seen than in the equivalent test of

the 50% polycarbonate-mounted sample. This suggests that the additional sti↵ness

in the 75% sample makes it more suitable for higher-impedance mounting.

6.3 Conclusions

Testing of material samples yielded di↵erent results depending on the excitation

location and mounting of the specimen. Certain excitation e↵ects, such as the promi-
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Figure 6.6. 75 % surrogate vibration for foam backing (top) and
polycarbonate backing (bottom) conditions, with side (left plots) and
end (right plots) shown. Significant features have been labeled on the
plot.

nence of flexural waves in the side excitation of the beam, are obvious. However, a

substantial di↵erence can be seen in the testing in testing of di↵erent excitation types

and mountings.

In the polycarbonate samples, the hung mounting showed fewer wavetypes than

either of the foam mounting conditions, due to the lack of restriction on the normal

vibration in the system. Under higher impedance mountings, the end excitation

showed significantly more wavetypes than the side excitation, even some that ought
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to be inherent to the side excitation (such as torsional waves). While waves relating

to the flexural motion of the beam and longitudinal vibration can easily be discerned,

there does not appear to be any features corresponding to shear waves through the

beam.

The surrogate material samples showed similar characteristics to the polycarbon-

ate samples; flexural waves and longitudinal waves can be seen in each sample, al-

though the 75% flexural waves may be too close in speed to separate into normal and

transverse components. The 50% sample showed significant damping, evident as a

one-sided wavenumber-frequency plot that shows little energy propagation towards

the excitation location. The addition of a sti↵ polycarbonate backing made a sub-

stantial di↵erence in the 50% sample case, masking all relevant wavetypes that can

clearly be seen in the foam-mounted condition. These e↵ects were not seen in the

sti↵er 75% sample, which is of equivalent density but much sti↵er.

The testing here will serve as a suitable assessment of wave propagation properties

in the unknown surrogate material; of particular note is that the 50% material has

a longitudinal wave speed slower than that in air. The subsonic region of wave

propagation in air will therefore be supersonic in the surrogate, minimizing the e↵ects

of evanescent waves in air in its excitation.
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CHAPTER 7. CONCLUSIONS

Evanescent waves have been shown to improve sound transmission across the fluid-

solid interface in subsonic regions of sound transmission. By using evanescent waves

to reduce the refraction e↵ects associated with large impedance di↵erence boundaries,

energy can be transmitted into solid materials via acoustical excitation that could not

be propagated in homogeneous energy transmission.

Evanescent waves are modeled for this work by using a complex angle of propaga-

tion, which produces a wavetype that decays normal to the direction of propagation;

this wavetype obeys the wave equation, and the complex angle can be easily inte-

grated into existing models of fluid-solid interaction. While such waves would be

di�cult to generate in open space, the pressure and velocity of such a wave can be

generated over a limited space along a surface. The complex angle of propagation,

then, is a convenient way to model evanescent waves in classical wave-propagation

equations.

The use of evanescent waves has no beneficial e↵ect on pressure transmission

levels, and will make no contribution to transmission in supersonic regions of fluid-

solid interaction. However, the intensity propagation into a material, particularly

in the subsonic region, is improved by the use of incident evanescent waves. At

incident angles above the critical angle, where the trace wave speed on the surface

falls below that of the material’s, refraction typically causes no energy propagation

into the material. The refraction of an evanescent wave does not approach the critical

angle, instead increasing the decay rate of the wave into the material. However, in

appropriate situations, such a decay is worthwhile to allow for propagation into the

material.

Monopoles have significant evanescent components, which can allow for exper-

imental verification of evanescent wave e↵ects. The decay of a monopole’s trace
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pressure distribution on a surface decays with distance, allowing for a controlled ratio

of evanescent to homogeneous wave components. Using a monopole source to judge

the e↵ects of evanescent waves on fluid-solid energy transmission showed significant

contributions of the evanescent waves to the total sound power transmitted into the

solid.

While the sound field of an evanescent wave would be di�cult to generate, ap-

proximating the boundary conditions seen by an evanescent wave on the fluid-solid

interaction surface would allow for proper transmission into the material. A key e↵ect

of the evanescent wave is the phase di↵erence between pressure and velocity; while

classical plane waves have in-phase pressure and velocity, the addition of the complex

angle component increases the phase di↵erence towards a 90 degree di↵erence.

Approximating the pressure distributions made by evanescent waves on the surface

of a material can be done using multiple simple sources. A formulation is developed

that computes the amplitude and phase of a monopole or dipole array based on

a least-squares approximation of an ideal pressure distribution on a surface. An

exploration of the parameters of the model shows a heavy emphasis on the incident

angle and frequency of the incident wave being modeled, with angle of incidence

being a particularly important parameter. The geometry of the source array shows a

proportional relationship between the stando↵ of the array and the required length to

obtain a good fit, with increased trace wavelength requiring additional source length.

Attempting to approximate evanescent waves on the surface showed a significant

reduction in the quality of the surface velocity fit, most likely due to the phase

di↵erence between the pressure and velocity that cannot be easily duplicated using

simple sources. Both monopole and dipole sources were found to model the desired

incident waves equally well; however, the dipole sources will have less e�ciency due

to the reduced radiation e�ciency of the dipole.

Modeling wave propagation through multi-layer materials allows for visualization

of the e↵ects of geometry and material coupling on the overall vibration characteristics

of the system. A model for propagation was formulated using the wave potentials in
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each layer, equating the material states at each interface to calculate the amplitudes

of each potential. The use of wave potentials allows for inter-layer state calculation,

as well as intensity calculation to allow for measurement of energy propagation into

the material.

Simulations from the wave potential model show significant e↵ects of flexural and

dilatational waves, which are formed from coupling of the longitudinal and shear

waves. The addition of thin, high-impedance materials as barrier materials will not

a↵ect these waves, as their increased material sti↵ness is overcome by the low flexural

sti↵ness resulting from their narrow width. However, removing the direct coupling

between the barrier and energetic layer causes an increase in energy transmission loss

into the material. The e↵ect of evanescent waves are put into context by the multi-

layer model; while they can increase energy transmission in the subsonic region, other

avenues of energy propagation may provide higher energy transmission, particularly

in lower-speed materials.

Measuring wavetypes experimentally is a process dependent on careful planning

in order to properly visualize the wavetypes in the system. The e↵ects of mounting

conditions and excitation location are shown through the classification of wave prop-

agation through a polycarbonate beam and two beams of surrogate materials with

unknown material properties. The polycarbonate beam’s properties are well-known,

and using the resulting vibration will allow a basis to analyze the properties of the

unknown surrogate materials. For the mounting conditions, the e↵ects of any restric-

tion to the vibration caused by mounting can be seen in the relationship between the

two flexural waves in the material; while the normal motion dominates in the low-

impedance hung condition, the e↵ects of the transverse wave on normal motion can

be clearly under additional constraint. When lower-impedance materials are mounted

to materials with significantly higher impedances, the wavetypes inherent to the ma-

terial are masked by the e↵ects of the mounting materials. The excitation location

plays a significant role on waves excited in the material; while the side excitation
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provides energy into the normal flexural wavetype, exciting the materials from the

end provides excitation of significantly more wavetypes.

The research presented here provides an initial foray into the theory and practical

considerations of evanescent wave propagation into multi-layer materials. Continuing

upon this research will allow for more precise applications of the theory, especially in

regards to development of novel excitation and detection technologies.

7.1 Future Work

Of primary concern to the research undertaken is the generation of evanescent

waves; while the theory presented here is promising, an experimental method to

generate such waves will be vital for exciting the systems of interest. The generation of

controlled pressure distributions would, on their own, be a significant area of research,

it would also allow for experimental measurements of evanescent wave propagation

across fluid-solid boundaries.

The model developed here allows for angular variation of source output, as shown

with the dipole model. Modifying the model slightly would allow for arbitrary angular

variation of each source, and characteristics representing real speakers could be input

and calculated. Additional modifications to the geometry can also be made from

the limited one explored here; for example; changing the angle of the linear source

array, or using creative geometries. Optimization of geometry for a desired pressure

distribution would be a more complex task, possibly requiring the use of a genetic

algorithm. Additional optimization of the model may also be possible by varying

the angle of each speaker in the array. The final goal of this modeling would be

the creation and experimental verification of an array. While other researchers have

developed arrays that allow for phase variation of the sources, the use of a 64-channel

output would be the basis of a setup that varies both amplitude and phase for a given

frequency.
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Understanding of the dynamic e↵ects of the pressure-velocity phase di↵erence,

which is an inherent property in evanescent waves, may provide additional avenues

of energy transmission. In the absence of evanescent wave generation, additional

methods to excite evanescent wave motion through vibrating a structure may also be

explored, such as monopole-like radiation in a solid resulting from a point excitation.

Once evanescent waves can be found to be generated in a solid, the e↵ects of

wavetypes with concentrated energy in a particular frequency should be explored,

particularly in multi-layer materials. For example, the ability to excite resonance in

a low-impedance interior layer bounded by high-impedance materials would show the

transmission e↵ects of evanescent waves and their ability to probe materials.

A detailed accounting for test methodology of unknown materials should be de-

veloped, taking into account the excitation type and mounting condition. Several

wavetypes of interest, such as the shear wave and dilatational waves, could not be

seen or verified during our tests; a novel excitation or measurement method may allow

for their detection and classification.
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APPENDIX A: MULTI-LAYER PROPAGATION CODE

The code below comprises the multi-layer propagation model developed in Chapter

5. An input structure, comprising the geometry and material properties of the system,

are input along with the frequency, incident angle, and requested positions for state

calculation. The resulting output is the wave potential amplitudes, the states, and

resulting matrices used in calculation.

The bulk of the code comprises formation of the multi-layer matrix, accounting

for di↵erent interface types and material states, along with separate code for the first

and last layers (which contain distinct wave features). This code calls on the code in

Appendix B for calculation of postion-based states.

function [PSI,states,A,B] = MLpot(input,f,inc_angle,x_req,makeplot)

if nargin<5

makeplot = ’n’;

end

%computes potential amplitudes (vector PSI) for multi-layer fluid-solid

%system by constructing a linear system of equations governing the

%interactions of each layer

%OUTPUTS:

% PSI - structure with of potential amplitudes and angles

% contains 1 incident reflected amplitude, 1 transmitted output,

% and 4 states for each interior layer

% states - structure of position-dependent material states

% A - constructed matrix

% B - constructed matrix in A*PSI=B
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%INPUTS:

% input - structure describing materials and geometry of system

% input structure (each layer is an input in a row vector):

% type - ’f’ for fluid and ’s’ for solid

% c - longitudinal wavespeed

% b - shear wavespeed (’0’ in fluids)

% rho - density

% L - length (’Inf’ on both sides)

% f - frequency

% inc_angle - complex incident angle (degrees)

% x_req - position vector for state calculation

% makeplot - make plot of position-dependent states

%convert incident angle to radians

inc_theta = real(inc_angle)*pi/180+1i*imag(inc_angle);

omega = 2*pi * f; %frequency in radians

PSI.f = f;

N = length(input.type); %number of layers

PSI_N = 4*(N-2)+2; %number of points in PSI

%calculate lambda and mu for each layer

mu = input.b.^2.*input.rho;

lambda = input.c.^2.*input.rho-2*mu;

kt = omega/input.c(1)*sin(inc_theta); %trace wavelength - constant!
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% material wavenumbers

k = omega./input.c;

kappa = omega./input.b;

%calculate normal wavenumbers and angles in each layer

k_z = sqrt(k.^2-kt^2);

kappa_z = sqrt(kappa.^2-kt^2); %check for imaginary numbers!!

theta = asin(kt./k);

gamma = asin(kt./kappa);

PSI.theta = theta;

PSI.gamma = gamma;

%calculate z-coordinates of each interface

z=zeros(1,N-1);

z(1) = 0;

for i = 2:N-1;

z(i) = sum(input.L(2:i));

end

PSI.z = z;

% PSI format:

% (1) incoming long

% (2) incoming shear

% (3) outgoing long

% (4) outgoing shear

A = zeros(PSI_N,PSI_N);
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B = zeros(PSI_N,1);

%construct matrix

%first layer - incident fluid only, only part with positive B input

if input.type(2) == ’f’ %only pressure, velocity conditions

%pressure condition

A(1,1) = -1i*omega*input.rho(1)*exp(1i*k_z(1)*-z(1)); %reflected long

A(1,2) = -1*(-1i*omega*input.rho(2)...

*exp(-1i*k_z(2)*-z(1))); %transmitted long

%A(1,4) components in "if" loop below

B(1) = -1*(-1i*omega*input.rho(1)*exp(-1i*k_z(1)*-z(1))); %INCOMING WAVE

%velocity condition

A(2,1) = 1i*k(1)*cos(theta(1))*exp(1i*k_z(1)*-z(1)); %reflected long

A(2,2) = -1*(-1i*k(2)*cos(theta(2))*...

exp(-1i*k_z(2)*-z(1))); %transmitted long

%A(2,4) component in "if" loop below

B(2) = -1*(-1i*k(1)*cos(theta(1))*...

exp(-1i*k_z(1)*-z(1))); %INCOMING WAVE

if N>2 %incorporate back-going waves

A(1,4) = -1*(-1i*omega*input.rho(2)*...

exp(1i*k_z(2)*-z(1))); %back-going long (in second fluid) %for N>2

A(2,4) = -1*(1i*k(2)*cos(theta(2))*...

exp(1i*k_z(2)*-z(1))); %back-going long for N>2

%set shear coefficients of layer 2 to zero

A(3,3) = 1;
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A(4,5) = 1;

end

r = 5;

elseif input.type(2) ==’s’

%stress relationship

A(1,1) = -1*( -1i * omega * input.rho(1) *...

exp(1i * -z(1) * k_z(1) )); %reflected long

A(1,2) = ( lambda(2) * -k(2)^2 + 2 * mu(2) * -k(2)^2 *...

cos(theta(2))^2)/(-1i*omega)*exp(-1i*-z(1)*k_z(2) ); %transmitted long

A(1,3) = (2*mu(2)*kappa(2)^2*cos(gamma(2))*sin(gamma(2)))/...

(-1i*omega)*exp(-1i*-z(1)*kappa_z(2) ); %transmitted shear

B(1) = (-1i*omega*input.rho(1))*exp(-1i*z(1)*k_z(1)); %INCOMING WAVE

%shear relationship

A(2,1) = 0; %reflected long

A(2,2) = mu(2)*(2*k(2)^2*cos(theta(2))*sin(theta(2)))/...

(-1i*omega)*exp(-1i*-z(1)*k_z(2)); %transmitted long

A(2,3) = mu(2)*(-kappa(2)^2*(sin(gamma(2))^2-cos(gamma(2))^2))/...

(-1i*omega)*exp(-1i*-z(1)*kappa_z(2)); %transmitted shear

B(2) = 0; %INCOMING WAVE

%normal velocity

A(3,1) = -1*( 1i*k(1)*cos(theta(1))*exp( 1i*-z(1)*k_z(1)));

A(3,2) = -1i*k(2)*cos(theta(2))*exp(-1i*-z(1)*k_z(2));
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A(3,3) = 1i*kappa(2)*sin(gamma(2))*exp(-1i*-z(1)*kappa_z(2));

B(3) = -1i*k(1)*cos(theta(1))*exp(-1i*-z(1)*k_z(1));

if N>2 %add backward-going components

A(1,4) = (lambda(2)* -k(2)^2 + 2*mu(2)*-k(2)^2*...

cos(theta(2))^2)/(-1i*omega)*...

exp(1i*-z(1)*k_z(2));%back-going long

A(1,5) = (2*mu(2)*-kappa(2)^2*cos(gamma(2))*sin(gamma(2)))/...

(-1i*omega)*exp(1i*-z(1)*kappa_z(2));%back-going shear

A(2,4) = mu(2)*(2*-k(2)^2*cos(theta(2))*sin(theta(2)))/...

(-1i*omega)*exp(1i*-z(1)*k_z(2));%back-going long

A(2,5) = mu(2)*(-kappa(2)^2*(sin(gamma(2))^2-cos(gamma(2))^2))/...

(-1i*omega)*exp(1i*-z(1)*kappa_z(2));%back-going shear

A(3,4) = 1i*k(2)*cos(theta(2))*...

exp(1i*z(1)*k_z(2));%back-going long

A(3,5) = 1i*kappa(2)*sin(gamma(2))*...

exp(1i*-z(1)*kappa_z(2));%back-going shear

elseif N==2 %zero out backward components

A(4,4) = 1;

A(5,5) = 1;

B(4) = 0;

B(5) = 0;
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end

r = 4;

end

if N>3

for i = 3:N-1

if input.type(i) == ’f’

if input.type(i-1)==’f’

%pressure

A(r,1+4*(i-3)+1) = -1i*omega*input.rho(i-1) *...

exp(- 1i * k_z(i-1) * -z(i-1)); %incoming long

A(r,1+4*(i-3)+3) = -1i*omega*input.rho(i-1) *...

exp( 1i * k_z(i-1) * -z(i-1)); %reflected long

A(r,1+4*(i-2)+1) = -1*(-1i*omega*input.rho(i) * ...

exp(- 1i * k_z(i) * -z(i-1))); %transmitted long

A(r,1+4*(i-2)+3) = -1*(-1i*omega*input.rho(i) * ...

exp( 1i * k_z(i) * -z(i-1))); %back-going long

%velocity

A(r+1,1+4*(i-3)+1) = -k(i-1)*cos(theta(i-1))*...

exp(-1i * k_z(i-1) * -z(i-1));

A(r+1,1+4*(i-3)+3) = k(i-1)*cos(theta(i-1))*...

exp(1i * k_z(i-1) * -z(i-1));

A(r+1,1+4*(i-2)+1) = -1*(-k(i)*cos(theta(i))*...

exp(-1i * k_z(i) * -z(i-1)));

A(r+1,1+4*(i-2)+3) = -1*(k(i)*cos(theta(i))*...

exp(1i * k_z(i) * -z(i-1)));
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%shear components in i-th fluid = 0

A(r+2,1+4*(i-2)+2) = 1;

A(r+3,1+4*(i-2)+4) = 1;

r = r+4;

elseif input.type(i-1)==’s’ %solid-fluid interface

%normal stress

A(r,1+4*(i-3)+1) = (lambda(i-1)*-k(i-1)^2+...

2*mu(i-1)*-k(i-1)^2*cos(theta(i-1))^2)*...

exp(-1i*k_z(i-1)*-z(i-1))/(-1i*omega);

A(r,1+4*(i-3)+2) = 2*mu(i-1)*kappa(i-1)^2*...

cos(gamma(i-1))*sin(gamma(i-1))*...

exp(-1i*kappa_z(i-1)*-z(i-1))/(-1i*omega);

A(r,1+4*(i-3)+3) = (lambda(i-1)*-k(i-1)^2+...

2*mu(i-1)*-k(i-1)^2*cos(theta(i-1))^2)*...

exp(1i*k_z(i-1)*-z(i-1))/(-1i*omega);

A(r,1+4*(i-3)+4) = 2*mu(i-1)*-kappa(i-1)^2*...

cos(gamma(i-1))*sin(gamma(i-1))*...

exp(1i*kappa_z(i-1)*-z(i-1))/(-1i*omega);

A(r,1+4*(i-2)+1) = -1*(-1i*omega*input.rho(i)*...

exp(-1i*k_z(i)*-z(i-1)));

A(r,1+4*(i-2)+3) = -1*(-1i*omega*input.rho(i)*...

exp(1i*k_z(i)*-z(i-1)));

%transverse stress

A(r+1,1+4*(i-3)+1) = mu(i-1)*(2*k(i-1)^2*...
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cos(theta(i-1))*sin(theta(i-1)))*...

exp(-1i*k_z(i-1)*-z(i-1))/(-1i*omega);

A(r+1,1+4*(i-3)+2) = mu(i-1)*(-kappa(i-1)^2*...

(sin(gamma(i-1))^2-cos(gamma(i-1))^2))*...

(exp(-1i*kappa_z(i-1)*-z(i-1)))/(-1i*omega);

A(r+1,1+4*(i-3)+3) = mu(i-1)*(2*-k(i-1)^2*...

cos(theta(i-1))*sin(theta(i-1)))*...

(exp(1i*k_z(i-1)*-z(i-1)))/(-1i*omega);

A(r+1,1+4*(i-3)+4) = mu(i-1)*(-kappa(i-1)^2*...

(sin(gamma(i-1))^2-cos(gamma(i-1))^2))*...

exp(1i*kappa_z(i-1)*-z(i-1))/(-1i*omega);

A(r+1,1+4*(i-2)+1) = 0;

A(r+1,1+4*(i-2)+3) = 0;

%normal velocity

A(r+2,1+4*(i-3)+1) = -1i*k(i-1)*cos(theta(i-1))*...

exp(-1i*k_z(i-1)*-z(i-1));

A(r+2,1+4*(i-3)+2) = 1i*kappa(i-1)*sin(gamma(i-1))*...

exp(-1i*kappa_z(i-1)*-z(i-1));

A(r+2,1+4*(i-3)+3) = 1i*k(i-1)*cos(theta(i-1))*...

exp(1i*k_z(i-1)*-z(i-1));

A(r+2,1+4*(i-3)+4) = 1i*kappa(i-1)*sin(gamma(i-1))*...

exp(1i*kappa_z(i-1)*-z(i-1));

A(r+2,1+4*(i-2)+1) = -1*(-1i*k(i)*cos(theta(i))*...

exp(-1i*k_z(i)*-z(i-1)));

A(r+2,1+4*(i-2)+3) = -1*(1i*k(i)*cos(theta(i))*...

exp(1i*k_z(i)*-z(i-1)));

% set shear components in i-th fluid to 0
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A(r+3,1+4*(i-2)+2) = 1;

A(r+4,1+4*(i-2)+4) = 1;

r = r+5;

end

elseif input.type(i) == ’s’

if input.type(i-1)==’s’

%normal stress

A(r,1+4*(i-3)+1) = (lambda(i-1)*-k(i-1)^2+...

2*mu(i-1)*-k(i-1)^2*cos(theta(i-1))^2)*...

exp(-1i*k_z(i-1)*-z(i-1))/(-1i*omega);

A(r,1+4*(i-3)+2) = 2*mu(i-1)*kappa(i-1)^2*...

cos(gamma(i-1))*sin(gamma(i-1))*...

exp(-1i*kappa_z(i-1)*-z(i-1))/(-1i*omega);

A(r,1+4*(i-3)+3) = (lambda(i-1)*-k(i-1)^2+...

2*mu(i-1)*-k(i-1)^2*cos(theta(i-1))^2)*...

exp(1i*k_z(i-1)*-z(i-1))/(-1i*omega);

A(r,1+4*(i-3)+4) = 2*mu(i-1)*-kappa(i-1)^2*...

cos(gamma(i-1))*sin(gamma(i-1))*...

exp(1i*kappa_z(i-1)*-z(i-1))/(-1i*omega);

A(r,1+4*(i-2)+1) = -1*((lambda(i)*-k(i)^2+...

2*mu(i)*-k(i)^2*cos(theta(i))^2)*...

exp(-1i*k_z(i)*-z(i-1))/(-1i*omega));

A(r,1+4*(i-2)+2) = -1*(2*mu(i)*kappa(i)^2*...

cos(gamma(i))*sin(gamma(i))*...

exp(-1i*kappa_z(i)*-z(i-1))/(-1i*omega));

A(r,1+4*(i-2)+3) = -1*((lambda(i)*-k(i)^2+...
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2*mu(i)*-k(i)^2*cos(theta(i))^2)*...

exp(1i*k_z(i)*-z(i-1))/(-1i*omega));

A(r,1+4*(i-2)+4) = -1*(2*mu(i)*-kappa(i)^2*...

cos(gamma(i))*sin(gamma(i))*...

exp(1i*kappa_z(i)*-z(i-1))/(-1i*omega));

%tangential stress

A(r+1,1+4*(i-3)+1) = mu(i-1)*(2*k(i-1)^2*...

cos(theta(i-1))*sin(theta(i-1)))*...

exp(-1i*k_z(i-1)*-z(i-1))/(-1i*omega);

A(r+1,1+4*(i-3)+2) = mu(i-1)*(kappa(i-1)^2*...

(-sin(gamma(i-1))^2+cos(gamma(i-1))^2))*...

(exp(-1i*kappa_z(i-1)*-z(i-1)))/(-1i*omega);

A(r+1,1+4*(i-3)+3) = mu(i-1)*(2*-k(i-1)^2*...

cos(theta(i-1))*sin(theta(i-1)))*...

(exp(1i*k_z(i-1)*-z(i-1)))/(-1i*omega);

A(r+1,1+4*(i-3)+4) = mu(i-1)*(kappa(i-1)^2*...

(-sin(gamma(i-1))^2+cos(gamma(i-1))^2))*...

exp(1i*kappa_z(i-1)*-z(i-1))/(-1i*omega);

A(r+1,1+4*(i-2)+1) = -1*(mu(i)*(2*k(i)^2*...

cos(theta(i))*sin(theta(i)))*...

exp(-1i*k_z(i)*-z(i-1))/(-1i*omega));

A(r+1,1+4*(i-2)+2) = -1*(mu(i)*(kappa(i)^2*...

(-sin(gamma(i))^2+cos(gamma(i))^2))*...

(exp(-1i*kappa_z(i)*-z(i-1)))/(-1i*omega));

A(r+1,1+4*(i-2)+3) = -1*(mu(i)*(2*-k(i)^2*...

cos(theta(i))*sin(theta(i)))*...

(exp(1i*k_z(i)*-z(i-1)))/(-1i*omega));

A(r+1,1+4*(i-2)+4) = -1*(mu(i)*(kappa(i)^2*...
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(-sin(gamma(i))^2+cos(gamma(i))^2))*...

exp(1i*kappa_z(i)*-z(i-1))/(-1i*omega));

%normal velocity

A(r+2,1+4*(i-3)+1) = 1i* -k(i-1)*cos(theta(i-1))*...

exp(-1i*k_z(i-1)*-z(i-1));

A(r+2,1+4*(i-3)+2) = 1i*kappa(i-1)*sin(gamma(i-1))*...

exp(-1i*kappa_z(i-1)*-z(i-1));

A(r+2,1+4*(i-3)+3) = 1i*k(i-1)*cos(theta(i-1))*...

exp(1i*k_z(i-1)*-z(i-1));

A(r+2,1+4*(i-3)+4) = 1i*kappa(i-1)*sin(gamma(i-1))*...

exp(1i*kappa_z(i-1)*-z(i-1));

A(r+2,1+4*(i-2)+1) = -1*(1i*-k(i)*cos(theta(i))*...

exp(-1i*k_z(i)*-z(i-1)));

A(r+2,1+4*(i-2)+2) = -1*(1i*kappa(i)*sin(gamma(i))*...

exp(-1i*kappa_z(i)*-z(i-1)));

A(r+2,1+4*(i-2)+3) = -1*(1i*k(i)*cos(theta(i))*...

exp(1i*k_z(i)*-z(i-1)));

A(r+2,1+4*(i-2)+4) = -1*(1i*kappa(i)*sin(gamma(i))*...

exp(1i*kappa_z(i)*-z(i-1)));

%tangential velocity

A(r+3,1+4*(i-3)+1) = 1i*k(i-1)*sin(theta(i-1))*...

exp(1i * -k_z(i-1) * -z(i-1));

A(r+3,1+4*(i-3)+2) = -1i*-kappa(i-1)*cos(gamma(i-1))*...

exp(1i * -kappa_z(i-1) * -z(i-1));

A(r+3,1+4*(i-3)+3) = 1i*k(i-1)*sin(theta(i-1))*...

exp(1i * k_z(i-1) * -z(i-1));

A(r+3,1+4*(i-3)+4) = -1i*kappa(i-1)*cos(gamma(i-1))*...
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exp(1i * kappa_z(i-1) * -z(i-1));

A(r+3,1+4*(i-2)+1) = -1*( 1i*k(i)*sin(theta(i))*...

exp(1i * -k_z(i) * -z(i-1) ) );

A(r+3,1+4*(i-2)+2) = -1*(-1i*-kappa(i)*cos(gamma(i))*...

exp(1i * -kappa_z(i) * -z(i-1)) );

A(r+3,1+4*(i-2)+3) = -1*( 1i*k(i)*sin(theta(i))*...

exp(1i * k_z(i) * -z(i-1)) );

A(r+3,1+4*(i-2)+4) = -1*(-1i*kappa(i)*cos(gamma(i))*...

exp(1i * kappa_z(i) * -z(i-1)) );

r = r+4;

elseif input.type(i-1)==’f’ %fluid-solid interface

%normal stress

A(r,1+4*(i-3)+1) = -1*(-1i*omega*input.rho(i-1)*...

exp(-1i*k_z(i-1)*-z(i-1)));

A(r,1+4*(i-3)+3) = -1*(-1i*omega*input.rho(i-1)*...

exp(1i*k_z(i-1)*-z(i-1)));

A(r,1+4*(i-2)+1) = (lambda(i)*-k(i)^2+2*mu(i)*...

-k(i)^2*cos(theta(i))^2)*...

exp(-1i*k_z(i)*-z(i-1))/(-1i*omega);

A(r,1+4*(i-2)+2) = 2*mu(i)*kappa(i)^2*...

cos(gamma(i))*sin(gamma(i))*...

exp(-1i*kappa_z(i)*-z(i-1))/(-1i*omega);

A(r,1+4*(i-2)+3) = (lambda(i)*-k(i)^2+2*mu(i)*...

-k(i)^2*cos(theta(i))^2)*...

exp(1i*k_z(i)*-z(i-1))/(-1i*omega);

A(r,1+4*(i-2)+4) = 2*mu(i)*-kappa(i)^2*...

cos(gamma(i))*sin(gamma(i))*...



143

exp(1i*kappa_z(i)*-z(i-1))/(-1i*omega);

%transverse stress

A(r+1,1+4*(i-3)+1) = 0;

A(r+1,1+4*(i-3)+3) = 0;

A(r+1,1+4*(i-2)+1) = mu(i)*2* k(i)^2*cos(theta(i))*...

sin(theta(i))*exp(-1i*k_z(i)*-z(i-1))/(-1i*omega);

A(r+1,1+4*(i-2)+2) = mu(i)*(-kappa(i)^2*...

(sin(gamma(i))^2-cos(gamma(i))^2))*...

exp(-1i*kappa_z(i)*-z(i-1))/(-1i*omega);

A(r+1,1+4*(i-2)+3) = mu(i)*(2*-k(i)^2*cos(theta(i))*...

sin(theta(i)))*exp(1i*k_z(i)*-z(i-1))/(-1i*omega);

A(r+1,1+4*(i-2)+4) = mu(i)*(-kappa(i)^2*...

(sin(gamma(i))^2-cos(gamma(i))^2))*...

exp(1i*kappa_z(i)*-z(i-1))/(-1i*omega);

%normal velocity

A(r+2,1+4*(i-3)+1) = -1*(-1i*k(i-1)*cos(theta(i-1))*...

exp(-1i*k_z(i-1)*-z(i-1)));

A(r+2,1+4*(i-3)+3) = -1*(1i*k(i-1)*cos(theta(i-1))*...

exp(1i*k_z(i-1)*-z(i-1)));

A(r+2,1+4*(i-2)+1) = -1i*k(i)*cos(theta(i))*...

exp(-1i*k_z(i)*-z(i-1));

A(r+2,1+4*(i-2)+2) = 1i*kappa(i)*sin(gamma(i))*...

exp(-1i*kappa_z(i)*-z(i-1));

A(r+2,1+4*(i-2)+3) = 1i*k(i)*cos(theta(i))*...

exp(1i*k_z(i)*-z(i-1));

A(r+2,1+4*(i-2)+4) = 1i*kappa(i)*sin(gamma(i))*...

exp(1i*kappa_z(i)*-z(i-1));
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r = r+3;

end

end

end

end

if N>2

i = N; %final layer - only outgoing long (into infinite fluid)

if input.type(N-1) == ’f’

%pressure

A(PSI_N-1,1+4*(i-3)+1) = -1i*omega*input.rho(i-1)...

* exp(- 1i * k_z(i-1) * -z(i-1)); %incoming long

A(PSI_N-1,1+4*(i-3)+3) = -1i*omega*input.rho(i-1)...

* exp( 1i * k_z(i-1) * -z(i-1)); %reflected long

A(PSI_N-1,1+4*(i-2)+1) = -1*(-1i*omega*input.rho(i)....

* exp( -1i * k_z(i) * -z(i-1))); %transmitted long long

%velocity

A(PSI_N,1+4*(i-3)+1) = -k(i-1)*cos(theta(i-1))...

*exp(-1i * k_z(i-1) * -z(i-1));

A(PSI_N,1+4*(i-3)+3) = k(i-1)*cos(theta(i-1))...

*exp(1i * k_z(i-1) * -z(i-1));

A(PSI_N,1+4*(i-2)+1) = -1*(-k(i)*cos(theta(i))...

*exp(-1i * k_z(i) * -z(i-1))); %outgoing long

elseif input.type(N-1) == ’s’
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%normal stress

A(PSI_N-2,1+4*(i-3)+1) = (lambda(i-1)*-k(i-1)^2+...

2*mu(i-1)*-k(i-1)^2*cos(theta(i-1))^2)...

*exp(-1i*k_z(i-1)*-z(i-1))/(-1i*omega);

A(PSI_N-2,1+4*(i-3)+2) = 2*mu(i-1)*kappa(i-1)^2*...

cos(gamma(i-1))*sin(gamma(i-1))...

*exp(-1i*kappa_z(i-1)*-z(i-1))/(-1i*omega);

A(PSI_N-2,1+4*(i-3)+3) = (lambda(i-1)*-k(i-1)^2+...

2*mu(i-1)*-k(i-1)^2*cos(theta(i-1))^2)...

*exp(1i*k_z(i-1)*-z(i-1))/(-1i*omega);

A(PSI_N-2,1+4*(i-3)+4) = 2*mu(i-1)*-kappa(i-1)^2*...

cos(gamma(i-1))*sin(gamma(i-1))*exp(1i*kappa_z(i-1)...

*-z(i-1))/(-1i*omega);

A(PSI_N-2,1+4*(i-2)+1) = -1*(-1i*omega*input.rho(i)*...

exp(-1i*k_z(i)*-z(i-1)));

%transverse stress

A(PSI_N-1,1+4*(i-3)+1) = mu(i-1)*2*k(i-1)^2*cos(theta(i-1))...

*sin(theta(i-1))*exp(-1i*k_z(i-1)*-z(i-1))/(-1i*omega);

A(PSI_N-1,1+4*(i-3)+2) = mu(i-1)*(-kappa(i-1)^2*...

(sin(gamma(i-1))^2-cos(gamma(i-1))^2))...

*(exp(-1i*kappa_z(i-1)*-z(i-1)))/(-1i*omega);

A(PSI_N-1,1+4*(i-3)+3) = mu(i-1)*(2*-k(i-1)^2*...

cos(theta(i-1))*sin(theta(i-1)))...

*(exp(1i*k_z(i-1)*-z(i-1)))/(-1i*omega);

A(PSI_N-1,1+4*(i-3)+4) = mu(i-1)*(-kappa(i-1)^2*...

(sin(gamma(i-1))^2-cos(gamma(i-1))^2))...

*exp(1i*kappa_z(i-1)*-z(i-1))/(-1i*omega);

A(PSI_N-1,1+4*(i-2)+1) = 0;
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%normal velocity

A(PSI_N,1+4*(i-3)+1) = -1i*k(i-1)*cos(theta(i-1))...

*exp(-1i*k_z(i-1)*-z(i-1));

A(PSI_N,1+4*(i-3)+2) = 1i*kappa(i-1)*sin(gamma(i-1))...

*exp(-1i*kappa_z(i-1)*-z(i-1));

A(PSI_N,1+4*(i-3)+3) = 1i*k(i-1)*cos(theta(i-1))...

*exp(1i*k_z(i-1)*-z(i-1));

A(PSI_N,1+4*(i-3)+4) = 1i*kappa(i-1)*sin(gamma(i-1))...

*exp(1i*kappa_z(i-1)*-z(i-1));

A(PSI_N,1+4*(i-2)+1) = -1*(-1i*k(i)*cos(theta(i))...

*exp(-1i*k_z(i)*-z(i-1)));

end

end

PSI.pot = inv(A)*B;

if nargin>3

states = MLstate_calc(input, PSI, x_req,makeplot);

else

states = ’’;

end
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APPENDIX B: MULTI-LAYER STATE CALCULATION CODE

This code calculates position-based states for the model presented in Chapter 5.

When given the input parameters for the model along with the solutions obtained us-

ing the code in Appendix A, the calculation of pressure, stress, velocity, and intensity

is performed at the requested positions.

The inputs for the model are the input parameters of geometry and material prop-

erties in the system (the same input used in Appendix A), the solutions obtained by

the code in Appendix A, and the position vector for calculation. The resulting out-

put is a structure containing all the material states, including intensity and reference

input parameters, for each position.

function states = MLstate(input, PSI, x,makeplot)

%EDITS 4/30 - added conditions for infinite solid interface

if nargin<4

makeplot = ’n’;

end

%compute states in material (as a function of incoming pressure)

%initial propagation angle basked into solution?

N = length(input.type); %number of layers

omega = 2*pi * PSI.f;

mu = input.b.^2.*input.rho;

lambda = input.c.^2.*input.rho-2*mu;
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%compute x-coordinates of borders

z=zeros(1,N-1);

z(1) = 0;

for i = 2:N-1;

z(i) = sum(input.L(2:i));

end

k = omega./input.c;

kappa = omega./input.b;

k_x = k.*sin(PSI.theta);

k_z = k.*cos(PSI.theta);

kappa_x = kappa.*sin(PSI.gamma);

kappa_z = kappa.*cos(PSI.gamma);

%if borders (z) not present, add to system

for i = 1:length(z)

ind = find(z(i)>=x,1,’last’);

% add a second point if already there

if length(ind)==0

x = [z(1) z(1) x];

else

x = [x(1:ind) z(i) x(ind+1:end)];

if x(ind) ~= z(i)

x = [x(1:ind) z(i) x(ind+1:end)];
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end

end

end

states.x = x;

%reference intensity - intensity at z = 0;

I_ref = 1/2*real(-1i*omega*input.rho(1) * conj(1i*k_z(1)* (-1)));

j = 1; %start on first layer

for i = 1:length(x) %cycle through all points

if j == 1

Zz_in = -1i*omega*input.rho(1) * (1*exp(-1i*k_z(1)*-x(i)));

Zz_out = -1i*omega*input.rho(1) * (PSI.pot(1)*...

exp(1i*k_z(1)*-x(i)));

Vz_in = 1i*k_z(1)* (-1*exp(-1i*k_z(1)*-x(i)));

Vz_out = 1i*k_z(1)* (PSI.pot(1)*exp(1i*k_z(1)*-x(i)));

states.Zz(i) = Zz_in+Zz_out;

states.Zx(i) = 0;

states.Vz(i) = Vz_in+Vz_out;

states.Vx(i) = 1i*k_x(j)*(PSI.pot(1)*exp(1i*k_z(1)*-x(i))+...

1*exp(-1i*k_z(1)*-x(i)));

states.I(1,i) = 1/2*real(Zz_out*conj(Vz_out));
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elseif j == N

if input.type(j) == ’f’

Zz_out = -1i*omega*input.rho(N) *...

(PSI.pot(1+4*(N-2)+1)*exp(-1i*k_z(N)*-x(i)));

Vz_out = -1i*k_z(N)*PSI.pot(1+4*(N-2)+1)*...

exp(-1i*k_z(N)*-x(i));

states.Zz(i) = Zz_out;

states.Zx(i) = 0;

states.Vz(i) = Vz_out;

states.Vx(i) = 1i*k_x(N)*PSI.pot(1+4*(N-2)+1)*...

exp(-1i*k_z(N)*-x(i));

states.I(1+4*(N-2)+1,i) = 1/2*real(Zz_out*conj(Vz_out));

elseif input.type(j) == ’s’

Zz_forward = ((lambda(j)*-k(j)^2+2*mu(j)*-k_z(j)^2)*...

PSI.pot(1+4*(j-2)+1)*exp(-1i*k_z(j)*-x(i))...

+2*mu(j)*kappa_z(j)*kappa_x(j)*PSI.pot(1+4*(j-2)+2)*...

exp(-1i*kappa_z(j)*-x(i)))/(-1i*omega);

Vz_forward = (1i*k_z(j)*-PSI.pot(1+4*(j-2)+1)*...

exp(-1i*k_z(j)*-x(i))+1i*kappa_x(j)*...

PSI.pot(1+4*(j-2)+2)*exp(-1i*kappa_z(j)*-x(i)));

Zx_forward = mu(j)*(2*k_x(j)*k_z(j)*PSI.pot(1+4*(j-2)+1)*...

exp(-1i*k_z(j)*-x(i))+(-kappa_x(j)^2+kappa_z(j)^2)*...

PSI.pot(1+4*(j-2)+2)*exp(-1i*kappa_z(j)*-x(i)))/...
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(-1i*omega);

Vx_forward = (1i*k_x(j)*PSI.pot(1+4*(j-2)+1)*...

exp(-1i*k_z(j)*-x(i))-1i*kappa_z(j)*...

-PSI.pot(1+4*(j-2)+2)*exp(-1i*kappa_z(j)*-x(i)));

states.Zz(i) = Zz_forward;

states.Zx(i) = Zx_forward;

states.Vz(i) = Vz_forward;

states.Vx(i) = Vx_forward;

states.I(1+4*(j-2)+1,i) = 1/2*real(Zz_forward*...

conj(Vz_forward));

states.I(1+4*(j-2)+2,i) = 1/2*real(Zx_forward*...

conj(Vx_forward));

end

else

if input.type(j) == ’f’

Zz_forward = -1i*omega*input.rho(j)*...

(PSI.pot(1+4*(j-2)+1)*exp(-1i*k_z(j)*-x(i)));

Zz_backward = -1i*omega*input.rho(j) *...

(PSI.pot(1+4*(j-2)+3)*exp(1i*k_z(j)*-x(i)));

Vz_forward = 1i*k_z(j)*...

-PSI.pot( 1+4*(j-2)+1)*exp(-1i*k_z(j)*-x(i));

Vz_backward = 1i*k_z(j)*...
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PSI.pot(1+4*(j-2)+3)*exp(1i*k_z(j)*-x(i));

states.Zz(i) = Zz_forward + Zz_backward;

states.Zx(i) = 0;

states.Vz(i) = Vz_forward + Vz_backward;

states.Vx(i) = 1i*k_x(j)*(PSI.pot( 1+4*(j-2)+1)*...

exp(-1i*k_z(j)*-x(i))+PSI.pot(1+4*(j-2)+3)*...

exp(1i*k_z(j)*-x(i)));

states.I(1+4*(j-2)+1,i) = 1/2*real(Zz_forward*...

conj(Vz_forward));

states.I(1+4*(j-2)+3,i) = 1/2*real(Zz_backward*...

conj(Vz_backward));

elseif input.type(j) == ’s’

Zz_forward = ((lambda(j)*-k(j)^2+2*mu(j)*-k_z(j)^2)*...

PSI.pot(1+4*(j-2)+1)*exp(-1i*k_z(j)*-x(i))+2*mu(j)*...

kappa_z(j)*kappa_x(j)*PSI.pot(1+4*(j-2)+2)*...

exp(-1i*kappa_z(j)*-x(i)))/(-1i*omega);

Zz_backward =((lambda(j)*-k(j)^2+2*mu(j)*-k_z(j)^2)*...

PSI.pot(1+4*(j-2)+3)*exp(1i*k_z(j)*-x(i))+2*mu(j)*...

-kappa_z(j)*kappa_x(j)*PSI.pot(1+4*(j-2)+4)*...

exp(1i*kappa_z(j)*-x(i)))/(-1i*omega);

Vz_forward = (1i*k_z(j)*-PSI.pot(1+4*(j-2)+1)*...

exp(-1i*k_z(j)*-x(i))+1i*kappa_x(j)*...

PSI.pot(1+4*(j-2)+2)*exp(-1i*kappa_z(j)*-x(i)));

Vz_backward = (1i*k_z(j)*PSI.pot(1+4*(j-2)+3)*...
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exp(1i*k_z(j)*-x(i))+1i*kappa_x(j)*...

PSI.pot(1+4*(j-2)+4)*exp(1i*kappa_z(j)*-x(i)));

Zx_forward = mu(j)*(2*k_x(j)*k_z(j)*PSI.pot(1+4*(j-2)+1)*...

exp(-1i*k_z(j)*-x(i))...

+(-kappa_x(j)^2+kappa_z(j)^2)*PSI.pot(1+4*(j-2)+2)*...

exp(-1i*kappa_z(j)*-x(i)))/(-1i*omega);

Zx_backward = mu(j)*(2*k_x(j)*k_z(j)*...

-PSI.pot(1+4*(j-2)+3)*exp(1i*k_z(j)*-x(i))...

+(-kappa_x(j)^2+kappa_z(j)^2)*PSI.pot(1+4*(j-2)+4)*...

exp(1i*kappa_z(j)*-x(i)))/(-1i*omega);

Vx_forward = (1i*k_x(j)*PSI.pot(1+4*(j-2)+1)*...

exp(-1i*k_z(j)*-x(i))-1i*kappa_z(j)*...

-PSI.pot(1+4*(j-2)+2)*exp(-1i*kappa_z(j)*-x(i)));

Vx_backward = (1i*k_x(j)*PSI.pot(1+4*(j-2)+3)*...

exp(1i*k_z(j)*-x(i))-1i*kappa_z(j)*...

PSI.pot(1+4*(j-2)+4)*exp(1i*kappa_z(j)*-x(i)));

states.Zz(i) = Zz_forward + Zz_backward;

states.Zx(i) = Zx_forward + Zx_backward;

states.Vz(i) = Vz_forward + Vz_backward;

states.Vx(i) = Vx_forward + Vx_backward;

states.I(1+4*(j-2)+1,i) = 1/2*real(Zz_forward*...

conj(Vz_forward));

states.I(1+4*(j-2)+2,i) = 1/2*real(Zx_forward*...

conj(Vx_forward));

states.I(1+4*(j-2)+3,i) = 1/2*real(Zz_backward*...
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conj(Vz_backward));

states.I(1+4*(j-2)+4,i) = 1/2*real(Zx_backward*...

conj(Vx_backward));

end

end

if j~=N

if z(j) == x(i) && z(j) == x(i+1)

%compute on both sides of the material border..

%(increases j by one after first border x value)

j = j+1;

end

end

end

%normalize against incoming pressure

states.Pin = -1i*omega*input.rho(1);

states.Zz = states.Zz/states.Pin;

states.Zx = states.Zx/states.Pin;

states.Vz = states.Vz/states.Pin;

states.Vx = states.Vx/states.Pin;

states.I= states.I./I_ref;

states.I_ref = I_ref;
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states.I1(1) = states.I(1,1)+1;

for i = 2:length(x)

if states.x(i)<=0 && states.x(i-1)~=0

states.I1 = states.I(1,:)+1;

else

states.I1(i) = 0;

end

end

%calculat Iz, Ix for each component

if strcmp(makeplot, ’n’)~=1

% %plot data

figure

subplot(221)

hold on

plot(states.x,abs(states.Zz))

plot(states.x,real(states.Zz),’r’)

axis tight

borderlines(z,input)

plot(states.x,abs(states.Zz)); plot(states.x,real(states.Zz),’r’)

ylabel(’Longitudinal Stress’)

subplot(222)

hold on

plot(states.x,abs(states.Vz))

plot(states.x,real(states.Vz),’r’)



156

axis tight

borderlines(z,input)

plot(states.x,abs(states.Vz)); plot(states.x,real(states.Vz),’r’)

ylabel(’Longitudinal Velocity’)

subplot(223)

hold on

plot(states.x,abs(states.Zx))

plot(states.x,real(states.Zx),’r’)

axis tight

borderlines(z,input)

plot(states.x,abs(states.Zx)); plot(states.x,real(states.Zx),’r’)

ylabel(’Transverse Stress’)

subplot(224)

hold on

plot(states.x,abs(states.Vx))

plot(states.x,real(states.Vx),’r’)

axis tight

borderlines(z,input)

plot(states.x,abs(states.Vx)); plot(states.x,real(states.Vx),’r’)

ylabel(’Transverse Velocity’)

end

end

function borderlines(z,input)

[Ybounds] = get(gca,’YLim’);

if nargin<2

for j = 1:length(z)

plot([z(j) z(j)], Ybounds,’--k’)
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end

else

%make rectangles corresponding to types instead!

rheight = Ybounds(2)-Ybounds(1)+2;

for j = 2:(length(input.type)-1)

rwidth = z(j)-z(j-1);

if input.type(j)==’s’ %orange rectangle

rectangle(’Position’,[z(j-1),Ybounds(1)-1,rwidth,...

rheight],’FaceColor’,[255 177 86]/255,’Linestyle’,’--’)

elseif input.type(j)==’f’

rectangle(’Position’,[z(j-1),Ybounds(1)-1,rwidth,...

rheight],’FaceColor’,[128 207 110]/255,’Linestyle’,’--’)

end

end

end

end
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APPENDIX C: MULTI-SOURCE CODE

The code below is the code for the model presented in Chapter 4 for generating

plane and evanescent wave pressure distributions using a source array. The model is

input with the desired frequency and angle of plane wave to be modeled (an evanescent

wave can be modeled using a complex angle of incidence), along with the length of

the pressure distribution, the stando↵ of the array, and the length and number of

sources in the array. It outputs a vector of the monopole source amplitudes (which

incorporate phase through a complex component), the resulting approximate pressure

and velocity generated, the correlation coe�cients for both pressure and the velocity,

and the position, pressure, and velocity vectors for the ideal pressure distribution.

The program first generates the ideal plane wave pressure and velocity, then con-

structs the matrix for calculation. Once the complex amplitudes of the sources has

been found, the program calculates the pressure and velocity resulting from the mul-

tiple sources and the correlation coe�cients of the pressure and velocity distributions.

function [A,Papprox,Vapprox,R_sq,X,Pideal,Videal,PdzApprox] =...

PV_approx(f,angle,L_x,Z0,L,N,phaseshift)

if nargin<7

phaseshift = 0;

end

%approximates monopole source strength using least-squares formulation

%OUTPUTS:

% A - source strengths

% Papprox - resulting pressure distribution in space

% Vapprox - resulting velocity distribution in space

% R_sq.P - fit coefficient for the pressure

% R_sq.V - fit coefficient for the velocity
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% X - x-coordinates for

% Pideal - ideal pressure on surface (to be fit)

% Videal - ideal velocity on surface

%INPUTS:

% f - frequency

% angle - complex angle of incidence

% L_x - length of desired pressure distribution

% Z0 - standoff distance of array

% L - length of array

% N - number of sources

% air material properties

c = 343;

rho = 1.2;

% functions of frequency

omega = 2*pi*f;

k = omega/c;

theta = real(angle)*pi/180+imag(angle)*1i; %incident angle in radians

X = linspace(-L_x/2,L_x/2,1024)’; %position vector

%ideal pressure/velocity distributions

Pideal = exp(1i*k*sin(theta)*X+phaseshift*pi/180)’;

Videal = -k*cos(theta)/(omega*rho)*exp(1i*k*sin(theta)*X+phaseshift*pi/180)’;

% source posiion vector

Y_x = linspace(-L/2,L/2,N)’; % x-positions
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Y = [Y_x Z0*ones(N,1)]; %matrix of x,y positions

%construct green’s function matrix

G_P = zeros(length(X),N);

for i = 1:length(X)

for j = 1:N

%Green’s function for distance r from source to point

r = sqrt((X(i,1)-Y(j,1))^2+(Y(j,2))^2);

H(i,j) = exp(1i*k*r)/(r);

end

end

%solve system HA = B for A

B = Pideal’;

A = pinv(H’*H)*H’*B;

% generate pressure, velocity from sources

Papprox = zeros(length(X),1);

Vapprox = zeros(length(X),1);

%compute approximate pressure, velocity distributions

for j = 1:N

for i = 1:length(X)

r(i) = sqrt((X(i,1)-Y(j,1))^2+(Y(j,2))^2);

phi(i) = atan((X(i,1)-Y(j,1))/Y(j,2));
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Papprox(i) = Papprox(i)+A(j)*exp(1i*k*r(i))/(r(i));

Vapprox(i) = Vapprox(i)-A(j)*1/(rho*c)*...

(1-1/(1i*k*r(i)))*exp(1i*k*r(i))/(r(i))*cos(phi(i));

end

end

%calculate R from P,V

MSE.P= sqrt(sum((real(Pideal)-real(Papprox’)).^2));

RMS.P = sqrt(sum(real(Pideal).^2));

MSE.V = sqrt(sum((real(Videal)-real(Vapprox’)).^2));

RMS.V = sqrt(sum(real(Videal).^2));

R_sq.P = 1-MSE.P/RMS.P;

R_sq.V = 1-MSE.V/RMS.V;
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